Darboux Transformations in Integrable Systems

Darboux Transformations in Integrable Systems PDF Author: Chaohao Gu
Publisher: Springer Science & Business Media
ISBN: 1402030886
Category : Science
Languages : en
Pages : 317

Get Book Here

Book Description
The Darboux transformation approach is one of the most effective methods for constructing explicit solutions of partial differential equations which are called integrable systems and play important roles in mechanics, physics and differential geometry. This book presents the Darboux transformations in matrix form and provides purely algebraic algorithms for constructing the explicit solutions. A basis for using symbolic computations to obtain the explicit exact solutions for many integrable systems is established. Moreover, the behavior of simple and multi-solutions, even in multi-dimensional cases, can be elucidated clearly. The method covers a series of important equations such as various kinds of AKNS systems in R1+n, harmonic maps from 2-dimensional manifolds, self-dual Yang-Mills fields and the generalizations to higher dimensional case, theory of line congruences in three dimensions or higher dimensional space etc. All these cases are explained in detail. This book contains many results that were obtained by the authors in the past few years. Audience: The book has been written for specialists, teachers and graduate students (or undergraduate students of higher grade) in mathematics and physics.

Darboux Transformations in Integrable Systems

Darboux Transformations in Integrable Systems PDF Author: Chaohao Gu
Publisher: Springer Science & Business Media
ISBN: 1402030886
Category : Science
Languages : en
Pages : 317

Get Book Here

Book Description
The Darboux transformation approach is one of the most effective methods for constructing explicit solutions of partial differential equations which are called integrable systems and play important roles in mechanics, physics and differential geometry. This book presents the Darboux transformations in matrix form and provides purely algebraic algorithms for constructing the explicit solutions. A basis for using symbolic computations to obtain the explicit exact solutions for many integrable systems is established. Moreover, the behavior of simple and multi-solutions, even in multi-dimensional cases, can be elucidated clearly. The method covers a series of important equations such as various kinds of AKNS systems in R1+n, harmonic maps from 2-dimensional manifolds, self-dual Yang-Mills fields and the generalizations to higher dimensional case, theory of line congruences in three dimensions or higher dimensional space etc. All these cases are explained in detail. This book contains many results that were obtained by the authors in the past few years. Audience: The book has been written for specialists, teachers and graduate students (or undergraduate students of higher grade) in mathematics and physics.

Discrete Integrable Systems

Discrete Integrable Systems PDF Author: Basil Grammaticos
Publisher:
ISBN: 9783662144602
Category :
Languages : en
Pages : 460

Get Book Here

Book Description


Bäcklund and Darboux Transformations

Bäcklund and Darboux Transformations PDF Author: C. Rogers
Publisher: Cambridge University Press
ISBN: 9780521012881
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
This book explores the deep and fascinating connections that exist between a ubiquitous class of physically important waves known as solitons and the theory of transformations of a privileged class of surfaces as they were studied by eminent geometers of the nineteenth century. Thus, nonlinear equations governing soliton propagation and also mathematical descriptions of their remarkable interaction properties are shown to arise naturally out of the classical differential geometry of surfaces and what are termed Bäcklund-Darboux transformations.This text, the first of its kind, is written in a straightforward manner and is punctuated by exercises to test the understanding of the reader. It is suitable for use in higher undergraduate or graduate level courses directed at applied mathematicians or mathematical physics.

Discrete Systems and Integrability

Discrete Systems and Integrability PDF Author: J. Hietarinta
Publisher: Cambridge University Press
ISBN: 1107042720
Category : Mathematics
Languages : en
Pages : 461

Get Book Here

Book Description
A first introduction to the theory of discrete integrable systems at a level suitable for students and non-experts.

Constrained Willmore Surfaces

Constrained Willmore Surfaces PDF Author: Áurea Casinhas Quintino
Publisher: Cambridge University Press
ISBN: 1108794424
Category : Mathematics
Languages : en
Pages : 261

Get Book Here

Book Description
From Bäcklund to Darboux: a comprehensive journey through the transformation theory of constrained Willmore surfaces, with applications to constant mean curvature surfaces.

Darboux Transformations and Solitons

Darboux Transformations and Solitons PDF Author: Vladimir B. Matveev
Publisher: Springer
ISBN: 9783662009246
Category : Science
Languages : en
Pages : 122

Get Book Here

Book Description
The modem theory of solitons was born in 1967 when Gardner, Greene, Kruskal and Miura related the solution of the Cauchy initial value problem for the Korteweg-de Vries equation to the inverse scattering problem for a one dimensional linear Schrödinger equation. Soliton theory is now a large part of theoretical and mathematical physics. An important method used to solve related equations is based on the Inverse Scattering Transform (IST). This IST method has been extended and applied to a large variety of (analytically) solvable non linear evolution equations, including many important examples describing phe nomena in nonlinear optics, solid state physics, hydrodynamics, theory of general relativity, plasma physics, etc. In the about twenty years of development the necessary mathematical tools have become rather sophisticated. They include the methods of algebraic geome try, the machinery of group representations, the theory of the local and nonlocal Riemann-Hilbert problem and many other "higher" levels of contemporary math ematics.

Algebraic and Geometric Aspects of Integrable Systems and Random Matrices

Algebraic and Geometric Aspects of Integrable Systems and Random Matrices PDF Author: Anton Dzhamay
Publisher: American Mathematical Soc.
ISBN: 0821887475
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
This volume contains the proceedings of the AMS Special Session on Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, held from January 6-7, 2012, in Boston, MA. The very wide range of topics represented in this volume illustrates

Integrable And Superintegrable Systems

Integrable And Superintegrable Systems PDF Author: Boris A Kuperschmidt
Publisher: World Scientific
ISBN: 9814506737
Category : Science
Languages : en
Pages : 399

Get Book Here

Book Description
Some of the most active practitioners in the field of integrable systems have been asked to describe what they think of as the problems and results which seem to be most interesting and important now and are likely to influence future directions. The papers in this collection, representing their authors' responses, offer a broad panorama of the subject as it enters the 1990's.

Integrable Systems, Geometry, and Topology

Integrable Systems, Geometry, and Topology PDF Author: Chuu-lian Terng
Publisher: American Mathematical Soc.
ISBN: 0821840487
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and theirrelations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations. The article by Heintze, Liu,and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of Yang-Mills-Higgs equations on Riemann surfaces. The article by Terng and Uhlenbeck explains the gauge equivalence of the matrix non-linear Schrödinger equation, the Schrödinger flow on Grassmanian, and the Heisenberg Feromagnetic model. The bookprovides an introduction to integrable systems and their relation to differential geometry. It is suitable for advanced graduate students and research mathematicians. Information for our distributors: Titles in this series are copublished with International Press, Cambridge, MA.

Symmetries and Integrability of Difference Equations

Symmetries and Integrability of Difference Equations PDF Author: Decio Levi
Publisher: Springer
ISBN: 3319566660
Category : Science
Languages : en
Pages : 441

Get Book Here

Book Description
This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers in the specific field of their expertise and, in turn, written for early career researchers. As a survey of the current state of the art, this book will serve as a valuable reference and is particularly well suited as an introduction to the field of symmetries and integrability of difference equations. Therefore, the book will be welcomed by advanced undergraduate and graduate students as well as by more advanced researchers.