Cyclic Homology

Cyclic Homology PDF Author: Jean-Louis Loday
Publisher: Springer Science & Business Media
ISBN: 3662217392
Category : Mathematics
Languages : en
Pages : 467

Get Book Here

Book Description
This book is a comprehensive study of cyclic homology theory together with its relationship with Hochschild homology, de Rham cohomology, S1 equivariant homology, the Chern character, Lie algebra homology, algebraic K-theory and non-commutative differential geometry. Though conceived as a basic reference on the subject, many parts of this book are accessible to graduate students.

Cyclic Homology

Cyclic Homology PDF Author: Jean-Louis Loday
Publisher: Springer Science & Business Media
ISBN: 3662217392
Category : Mathematics
Languages : en
Pages : 467

Get Book Here

Book Description
This book is a comprehensive study of cyclic homology theory together with its relationship with Hochschild homology, de Rham cohomology, S1 equivariant homology, the Chern character, Lie algebra homology, algebraic K-theory and non-commutative differential geometry. Though conceived as a basic reference on the subject, many parts of this book are accessible to graduate students.

Cyclic Homology of Algebras

Cyclic Homology of Algebras PDF Author: Peter Seibt
Publisher: World Scientific
ISBN: 9789971504700
Category : Mathematics
Languages : en
Pages : 176

Get Book Here

Book Description
This book is purely algebraic and concentrates on cyclic homology rather than on cohomology. It attempts to single out the basic algebraic facts and techniques of the theory.The book is organized in two chapters. The first chapter deals with the intimate relation of cyclic theory to ordinary Hochschild theory. The second chapter deals with cyclic homology as a typical characteristic zero theory.

Cyclic Homology

Cyclic Homology PDF Author: Jean-Louis Loday
Publisher: Springer Science & Business Media
ISBN: 3662113899
Category : Mathematics
Languages : en
Pages : 525

Get Book Here

Book Description
From the reviews: "This is a very interesting book containing material for a comprehensive study of the cyclid homological theory of algebras, cyclic sets and S1-spaces. Lie algebras and algebraic K-theory and an introduction to Connes'work and recent results on the Novikov conjecture. The book requires a knowledge of homological algebra and Lie algebra theory as well as basic technics coming from algebraic topology. The bibliographic comments at the end of each chapter offer good suggestions for further reading and research. The book can be strongly recommended to anybody interested in noncommutative geometry, contemporary algebraic topology and related topics." European Mathematical Society Newsletter In this second edition the authors have added a chapter 13 on MacLane (co)homology.

Hochschild Cohomology for Algebras

Hochschild Cohomology for Algebras PDF Author: Sarah J. Witherspoon
Publisher: American Mathematical Soc.
ISBN: 1470449315
Category : Education
Languages : en
Pages : 265

Get Book Here

Book Description
This book gives a thorough and self-contained introduction to the theory of Hochschild cohomology for algebras and includes many examples and exercises. The book then explores Hochschild cohomology as a Gerstenhaber algebra in detail, the notions of smoothness and duality, algebraic deformation theory, infinity structures, support varieties, and connections to Hopf algebra cohomology. Useful homological algebra background is provided in an appendix. The book is designed both as an introduction for advanced graduate students and as a resource for mathematicians who use Hochschild cohomology in their work.

An Introduction to Homological Algebra

An Introduction to Homological Algebra PDF Author: Charles A. Weibel
Publisher: Cambridge University Press
ISBN: 113964307X
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.

Topics in Cyclic Theory

Topics in Cyclic Theory PDF Author: Daniel G. Quillen
Publisher: Cambridge University Press
ISBN: 1108479618
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
This accessible introduction for Ph.D. students and non-specialists provides Quillen's unique development of cyclic theory.

Quasi-Hopf Algebras

Quasi-Hopf Algebras PDF Author: Daniel Bulacu
Publisher: Cambridge University Press
ISBN: 1108427014
Category : Mathematics
Languages : en
Pages : 545

Get Book Here

Book Description
This self-contained book dedicated to Drinfeld's quasi-Hopf algebras takes the reader from the basics to the state of the art.

The Local Structure of Algebraic K-Theory

The Local Structure of Algebraic K-Theory PDF Author: Bjørn Ian Dundas
Publisher: Springer Science & Business Media
ISBN: 1447143930
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.

Higher Algebraic K-Theory: An Overview

Higher Algebraic K-Theory: An Overview PDF Author: Emilio Lluis-Puebla
Publisher: Springer
ISBN: 3540466398
Category : Mathematics
Languages : en
Pages : 172

Get Book Here

Book Description
This book is a general introduction to Higher Algebraic K-groups of rings and algebraic varieties, which were first defined by Quillen at the beginning of the 70's. These K-groups happen to be useful in many different fields, including topology, algebraic geometry, algebra and number theory. The goal of this volume is to provide graduate students, teachers and researchers with basic definitions, concepts and results, and to give a sampling of current directions of research. Written by five specialists of different parts of the subject, each set of lectures reflects the particular perspective ofits author. As such, this volume can serve as a primer (if not as a technical basic textbook) for mathematicians from many different fields of interest.

The Homology of Banach and Topological Algebras

The Homology of Banach and Topological Algebras PDF Author: A.Y. Helemskii
Publisher: Springer Science & Business Media
ISBN: 9780792302179
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
'Et moi *.... si j'avait su comment en revenir. One service mathematics has rendered the human race. It has put common sense back je n'y serais point aUe.' it belongs. on the topmost shelf next Jules Verne where to the dusty canister labelled 'discarded non· The series is divergent: therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non­ linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com­ puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.