Author: Richard M. Kane
Publisher: American Mathematical Soc.
ISBN: 9780821860038
Category : Mathematics
Languages : en
Pages : 542
Book Description
Proceedings of a Conference held at the University of Western Ontario in 1981. More than one hundred papers were presented by researchers from a wide spectrum of countries and institutions.
Current Trends in Algebraic Topology
Author: Richard M. Kane
Publisher: American Mathematical Soc.
ISBN: 9780821860038
Category : Mathematics
Languages : en
Pages : 542
Book Description
Proceedings of a Conference held at the University of Western Ontario in 1981. More than one hundred papers were presented by researchers from a wide spectrum of countries and institutions.
Publisher: American Mathematical Soc.
ISBN: 9780821860038
Category : Mathematics
Languages : en
Pages : 542
Book Description
Proceedings of a Conference held at the University of Western Ontario in 1981. More than one hundred papers were presented by researchers from a wide spectrum of countries and institutions.
Current Developments in Algebraic Geometry
Author: Lucia Caporaso
Publisher: Cambridge University Press
ISBN: 052176825X
Category : Mathematics
Languages : en
Pages : 437
Book Description
This volume, based on a workshop by the MSRI, offers an overview of the state of the art in many areas of algebraic geometry.
Publisher: Cambridge University Press
ISBN: 052176825X
Category : Mathematics
Languages : en
Pages : 437
Book Description
This volume, based on a workshop by the MSRI, offers an overview of the state of the art in many areas of algebraic geometry.
Elements of Point Set Topology
Author: John D. Baum
Publisher: Courier Corporation
ISBN: 0486668266
Category : Mathematics
Languages : en
Pages : 164
Book Description
Topology continues to be a topic of prime importance in contemporary mathematics, but until the publication of this book there were few if any introductions to topology for undergraduates. This book remedied that need by offering a carefully thought-out, graduated approach to point set topology at the undergraduate level. To make the book as accessible as possible, the author approaches topology from a geometric and axiomatic standpoint; geometric, because most students come to the subject with a good deal of geometry behind them, enabling them to use their geometric intuition; axiomatic, because it parallels the student's experience with modern algebra, and keeps the book in harmony with current trends in mathematics. After a discussion of such preliminary topics as the algebra of sets, Euler-Venn diagrams and infinite sets, the author takes up basic definitions and theorems regarding topological spaces (Chapter 1). The second chapter deals with continuous functions (mappings) and homeomorphisms, followed by two chapters on special types of topological spaces (varieties of compactness and varieties of connectedness). Chapter 5 covers metric spaces. Since basic point set topology serves as a foundation not only for functional analysis but also for more advanced work in point set topology and algebraic topology, the author has included topics aimed at students with interests other than analysis. Moreover, Dr. Baum has supplied quite detailed proofs in the beginning to help students approaching this type of axiomatic mathematics for the first time. Similarly, in the first part of the book problems are elementary, but they become progressively more difficult toward the end of the book. References have been supplied to suggest further reading to the interested student.
Publisher: Courier Corporation
ISBN: 0486668266
Category : Mathematics
Languages : en
Pages : 164
Book Description
Topology continues to be a topic of prime importance in contemporary mathematics, but until the publication of this book there were few if any introductions to topology for undergraduates. This book remedied that need by offering a carefully thought-out, graduated approach to point set topology at the undergraduate level. To make the book as accessible as possible, the author approaches topology from a geometric and axiomatic standpoint; geometric, because most students come to the subject with a good deal of geometry behind them, enabling them to use their geometric intuition; axiomatic, because it parallels the student's experience with modern algebra, and keeps the book in harmony with current trends in mathematics. After a discussion of such preliminary topics as the algebra of sets, Euler-Venn diagrams and infinite sets, the author takes up basic definitions and theorems regarding topological spaces (Chapter 1). The second chapter deals with continuous functions (mappings) and homeomorphisms, followed by two chapters on special types of topological spaces (varieties of compactness and varieties of connectedness). Chapter 5 covers metric spaces. Since basic point set topology serves as a foundation not only for functional analysis but also for more advanced work in point set topology and algebraic topology, the author has included topics aimed at students with interests other than analysis. Moreover, Dr. Baum has supplied quite detailed proofs in the beginning to help students approaching this type of axiomatic mathematics for the first time. Similarly, in the first part of the book problems are elementary, but they become progressively more difficult toward the end of the book. References have been supplied to suggest further reading to the interested student.
Algebraic Topology of Finite Topological Spaces and Applications
Author: Jonathan A. Barmak
Publisher: Springer Science & Business Media
ISBN: 3642220029
Category : Mathematics
Languages : en
Pages : 184
Book Description
This volume deals with the theory of finite topological spaces and its relationship with the homotopy and simple homotopy theory of polyhedra. The interaction between their intrinsic combinatorial and topological structures makes finite spaces a useful tool for studying problems in Topology, Algebra and Geometry from a new perspective. In particular, the methods developed in this manuscript are used to study Quillen's conjecture on the poset of p-subgroups of a finite group and the Andrews-Curtis conjecture on the 3-deformability of contractible two-dimensional complexes. This self-contained work constitutes the first detailed exposition on the algebraic topology of finite spaces. It is intended for topologists and combinatorialists, but it is also recommended for advanced undergraduate students and graduate students with a modest knowledge of Algebraic Topology.
Publisher: Springer Science & Business Media
ISBN: 3642220029
Category : Mathematics
Languages : en
Pages : 184
Book Description
This volume deals with the theory of finite topological spaces and its relationship with the homotopy and simple homotopy theory of polyhedra. The interaction between their intrinsic combinatorial and topological structures makes finite spaces a useful tool for studying problems in Topology, Algebra and Geometry from a new perspective. In particular, the methods developed in this manuscript are used to study Quillen's conjecture on the poset of p-subgroups of a finite group and the Andrews-Curtis conjecture on the 3-deformability of contractible two-dimensional complexes. This self-contained work constitutes the first detailed exposition on the algebraic topology of finite spaces. It is intended for topologists and combinatorialists, but it is also recommended for advanced undergraduate students and graduate students with a modest knowledge of Algebraic Topology.
More Concise Algebraic Topology
Author: J. P. May
Publisher: University of Chicago Press
ISBN: 0226511782
Category : Mathematics
Languages : en
Pages : 544
Book Description
With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.
Publisher: University of Chicago Press
ISBN: 0226511782
Category : Mathematics
Languages : en
Pages : 544
Book Description
With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.
Recent Progress in Homotopy Theory
Author: Donald M. Davis
Publisher: American Mathematical Soc.
ISBN: 0821828010
Category : Mathematics
Languages : en
Pages : 424
Book Description
This volume presents the proceedings from the month-long program held at Johns Hopkins University (Baltimore, MD) on homotopy theory, sponsored by the Japan-U.S. Mathematics Institute (JAMI). The book begins with historical accounts on the work of Professors Peter Landweber and Stewart Priddy. Central among the other topics are the following: 1. classical and nonclassical theory of $H$-spaces, compact groups, and finite groups, 2. classical and chromatic homotopy theory andlocalization, 3. classical and topological Hochschild cohomology, 4. elliptic cohomology and its relation to Moonshine and topological modular forms, and 5. motivic cohomology and Chow rings. This volume surveys the current state of research in these areas and offers an overview of futuredirections.
Publisher: American Mathematical Soc.
ISBN: 0821828010
Category : Mathematics
Languages : en
Pages : 424
Book Description
This volume presents the proceedings from the month-long program held at Johns Hopkins University (Baltimore, MD) on homotopy theory, sponsored by the Japan-U.S. Mathematics Institute (JAMI). The book begins with historical accounts on the work of Professors Peter Landweber and Stewart Priddy. Central among the other topics are the following: 1. classical and nonclassical theory of $H$-spaces, compact groups, and finite groups, 2. classical and chromatic homotopy theory andlocalization, 3. classical and topological Hochschild cohomology, 4. elliptic cohomology and its relation to Moonshine and topological modular forms, and 5. motivic cohomology and Chow rings. This volume surveys the current state of research in these areas and offers an overview of futuredirections.
Topics in Cohomological Studies of Algebraic Varieties
Author: Piotr Pragacz
Publisher: Springer Science & Business Media
ISBN: 9783764372149
Category : Mathematics
Languages : en
Pages : 332
Book Description
The articles in this volume study various cohomological aspects of algebraic varieties: - characteristic classes of singular varieties; - geometry of flag varieties; - cohomological computations for homogeneous spaces; - K-theory of algebraic varieties; - quantum cohomology and Gromov-Witten theory. The main purpose is to give comprehensive introductions to the above topics through a series of "friendly" texts starting from a very elementary level and ending with the discussion of current research. In the articles, the reader will find classical results and methods as well as new ones. Numerous examples will help to understand the mysteries of the cohomological theories presented. The book will be a useful guide to research in the above-mentioned areas. It is adressed to researchers and graduate students in algebraic geometry, algebraic topology, and singularity theory, as well as to mathematicians interested in homogeneous varieties and symmetric functions. Most of the material exposed in the volume has not appeared in books before. Contributors: Paolo Aluffi Michel Brion Anders Skovsted Buch Haibao Duan Ali Ulas Ozgur Kisisel Piotr Pragacz Jörg Schürmann Marek Szyjewski Harry Tamvakis
Publisher: Springer Science & Business Media
ISBN: 9783764372149
Category : Mathematics
Languages : en
Pages : 332
Book Description
The articles in this volume study various cohomological aspects of algebraic varieties: - characteristic classes of singular varieties; - geometry of flag varieties; - cohomological computations for homogeneous spaces; - K-theory of algebraic varieties; - quantum cohomology and Gromov-Witten theory. The main purpose is to give comprehensive introductions to the above topics through a series of "friendly" texts starting from a very elementary level and ending with the discussion of current research. In the articles, the reader will find classical results and methods as well as new ones. Numerous examples will help to understand the mysteries of the cohomological theories presented. The book will be a useful guide to research in the above-mentioned areas. It is adressed to researchers and graduate students in algebraic geometry, algebraic topology, and singularity theory, as well as to mathematicians interested in homogeneous varieties and symmetric functions. Most of the material exposed in the volume has not appeared in books before. Contributors: Paolo Aluffi Michel Brion Anders Skovsted Buch Haibao Duan Ali Ulas Ozgur Kisisel Piotr Pragacz Jörg Schürmann Marek Szyjewski Harry Tamvakis
A User's Guide to Spectral Sequences
Author: John McCleary
Publisher: Cambridge University Press
ISBN: 0521567599
Category : Mathematics
Languages : en
Pages : 579
Book Description
Spectral sequences are among the most elegant and powerful methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first part treats the algebraic foundations for this sort of homological algebra, starting from informal calculations. The heart of the text is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.
Publisher: Cambridge University Press
ISBN: 0521567599
Category : Mathematics
Languages : en
Pages : 579
Book Description
Spectral sequences are among the most elegant and powerful methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first part treats the algebraic foundations for this sort of homological algebra, starting from informal calculations. The heart of the text is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.
Novikov Conjectures, Index Theorems, and Rigidity: Volume 1
Author: Steven C. Ferry
Publisher: Cambridge University Press
ISBN: 0521497965
Category : Mathematics
Languages : en
Pages : 386
Book Description
These volumes are the outgrowth of a conference held at the Mathematisches Forschungsinstitut Oberwolfach (Germany) on the subject of 'Novikov Conjectures, Index Theorems and Rigidity'.
Publisher: Cambridge University Press
ISBN: 0521497965
Category : Mathematics
Languages : en
Pages : 386
Book Description
These volumes are the outgrowth of a conference held at the Mathematisches Forschungsinstitut Oberwolfach (Germany) on the subject of 'Novikov Conjectures, Index Theorems and Rigidity'.
Rational Homotopy Theory and Differential Forms
Author: Phillip Griffiths
Publisher: Springer Science & Business Media
ISBN: 1461484685
Category : Mathematics
Languages : en
Pages : 228
Book Description
This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham’s theorem on simplicial complexes. In addition, Sullivan’s results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma *Presentation of a natural proof of a Serre spectral sequence result *Updated content throughout the book, reflecting advances in the area of homotopy theory With its modern approach and timely revisions, this second edition of Rational Homotopy Theory and Differential Forms will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.
Publisher: Springer Science & Business Media
ISBN: 1461484685
Category : Mathematics
Languages : en
Pages : 228
Book Description
This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham’s theorem on simplicial complexes. In addition, Sullivan’s results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma *Presentation of a natural proof of a Serre spectral sequence result *Updated content throughout the book, reflecting advances in the area of homotopy theory With its modern approach and timely revisions, this second edition of Rational Homotopy Theory and Differential Forms will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.