Artificial Intelligence and Machine Learning for Smart Community

Artificial Intelligence and Machine Learning for Smart Community PDF Author: T V Ramana
Publisher: CRC Press
ISBN: 1003835724
Category : Computers
Languages : en
Pages : 148

Get Book Here

Book Description
Intelligent systems are technologically advanced machines that perceive and respond to the world around them. Artificial Intelligence and Machine Learning for Smart Community: Concepts and Applications presents the evolution, challenges, and limitations of the application of machine learning and artificial intelligence to intelligent systems and smart communities. Covers the core and fundamental aspects of artificial intelligence, machine learning, and computational algorithms in smart intelligent systems Discusses the integration of artificial intelligence with machine learning using mathematical modeling Elaborates concepts like supervised and unsupervised learning, and machine learning algorithms, such as linear regression, logistic regression, random forest, and performance evaluation matrices Introduces modern algorithms such as convolutional neural networks and support vector machines Presents case studies on smart healthcare, smart traffic management, smart buildings, autonomous vehicles, smart education, modern community, and smart machines Artificial Intelligence and Machine Learning for Smart Community: Concepts and Applications is primarily written for graduate students and academic researchers working in the fields of computer science and engineering, electrical engineering, and information technology. Seasonal Blurb: This reference text presents the most recent and advanced research on the application of artificial intelligence and machine learning on intelligent systems. It will discuss important topics such as business intelligence, reinforcement learning, supervised learning, and unsupervised learning in a comprehensive manner.

Artificial Intelligence and Machine Learning for Smart Community

Artificial Intelligence and Machine Learning for Smart Community PDF Author: T V Ramana
Publisher: CRC Press
ISBN: 1003835724
Category : Computers
Languages : en
Pages : 148

Get Book Here

Book Description
Intelligent systems are technologically advanced machines that perceive and respond to the world around them. Artificial Intelligence and Machine Learning for Smart Community: Concepts and Applications presents the evolution, challenges, and limitations of the application of machine learning and artificial intelligence to intelligent systems and smart communities. Covers the core and fundamental aspects of artificial intelligence, machine learning, and computational algorithms in smart intelligent systems Discusses the integration of artificial intelligence with machine learning using mathematical modeling Elaborates concepts like supervised and unsupervised learning, and machine learning algorithms, such as linear regression, logistic regression, random forest, and performance evaluation matrices Introduces modern algorithms such as convolutional neural networks and support vector machines Presents case studies on smart healthcare, smart traffic management, smart buildings, autonomous vehicles, smart education, modern community, and smart machines Artificial Intelligence and Machine Learning for Smart Community: Concepts and Applications is primarily written for graduate students and academic researchers working in the fields of computer science and engineering, electrical engineering, and information technology. Seasonal Blurb: This reference text presents the most recent and advanced research on the application of artificial intelligence and machine learning on intelligent systems. It will discuss important topics such as business intelligence, reinforcement learning, supervised learning, and unsupervised learning in a comprehensive manner.

Classification Applications with Deep Learning and Machine Learning Technologies

Classification Applications with Deep Learning and Machine Learning Technologies PDF Author: Laith Abualigah
Publisher: Springer Nature
ISBN: 303117576X
Category : Technology & Engineering
Languages : en
Pages : 287

Get Book Here

Book Description
This book is very beneficial for early researchers/faculty who want to work in deep learning and machine learning for the classification domain. It helps them study, formulate, and design their research goal by aligning the latest technologies studies’ image and data classifications. The early start-up can use it to work with product or prototype design requirement analysis and its design and development.

Empirical Asset Pricing

Empirical Asset Pricing PDF Author: Wayne Ferson
Publisher: MIT Press
ISBN: 0262039370
Category : Business & Economics
Languages : en
Pages : 497

Get Book Here

Book Description
An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.

Handbook of Research on Computer Vision and Image Processing in the Deep Learning Era

Handbook of Research on Computer Vision and Image Processing in the Deep Learning Era PDF Author: Srinivasan, A.
Publisher: IGI Global
ISBN: 1799888940
Category : Computers
Languages : en
Pages : 467

Get Book Here

Book Description
In recent decades, there has been an increasing interest in using machine learning and, in the last few years, deep learning methods combined with other vision and image processing techniques to create systems that solve vision problems in different fields. There is a need for academicians, developers, and industry-related researchers to present, share, and explore traditional and new areas of computer vision, machine learning, deep learning, and their combinations to solve problems. The Handbook of Research on Computer Vision and Image Processing in the Deep Learning Era is designed to serve researchers and developers by sharing original, innovative, and state-of-the-art algorithms and architectures for applications in the areas of computer vision, image processing, biometrics, virtual and augmented reality, and more. It integrates the knowledge of the growing international community of researchers working on the application of machine learning and deep learning methods in vision and robotics. Covering topics such as brain tumor detection, heart disease prediction, and medical image detection, this premier reference source is an exceptional resource for medical professionals, faculty and students of higher education, business leaders and managers, librarians, government officials, researchers, and academicians.

Urban Informatics

Urban Informatics PDF Author: Wenzhong Shi
Publisher: Springer Nature
ISBN: 9811589836
Category : Social Science
Languages : en
Pages : 941

Get Book Here

Book Description
This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.

Smart Multimedia

Smart Multimedia PDF Author: Anup Basu
Publisher: Springer
ISBN: 3030043754
Category : Computers
Languages : en
Pages : 457

Get Book Here

Book Description
This book constitutes the proceedings of the First International Conference on Smart Multimedia, ICSM 2018, which was held in Toulon, France, in August 2018. The 39 papers presented were selected from about 100 submissions and are grouped in sections on social, affective and cognition analysis, person-centered smart multimedia: serving people with disabilities to the general population, haptic and robots for smart multimedia applications, MR, 3D, underwater image processing, smart signal processing meets smart sensing, visual behavior analysis: methods and applications, video analysis, learning, low-level vision, miscellaneous.

The Multi-Agent Transport Simulation MATSim

The Multi-Agent Transport Simulation MATSim PDF Author: Andreas Horni
Publisher: Ubiquity Press
ISBN: 190918876X
Category : Technology & Engineering
Languages : en
Pages : 620

Get Book Here

Book Description
The MATSim (Multi-Agent Transport Simulation) software project was started around 2006 with the goal of generating traffic and congestion patterns by following individual synthetic travelers through their daily or weekly activity programme. It has since then evolved from a collection of stand-alone C++ programs to an integrated Java-based framework which is publicly hosted, open-source available, automatically regression tested. It is currently used by about 40 groups throughout the world. This book takes stock of the current status. The first part of the book gives an introduction to the most important concepts, with the intention of enabling a potential user to set up and run basic simulations. The second part of the book describes how the basic functionality can be extended, for example by adding schedule-based public transit, electric or autonomous cars, paratransit, or within-day replanning. For each extension, the text provides pointers to the additional documentation and to the code base. It is also discussed how people with appropriate Java programming skills can write their own extensions, and plug them into the MATSim core. The project has started from the basic idea that traffic is a consequence of human behavior, and thus humans and their behavior should be the starting point of all modelling, and with the intuition that when simulations with 100 million particles are possible in computational physics, then behavior-oriented simulations with 10 million travelers should be possible in travel behavior research. The initial implementations thus combined concepts from computational physics and complex adaptive systems with concepts from travel behavior research. The third part of the book looks at theoretical concepts that are able to describe important aspects of the simulation system; for example, under certain conditions the code becomes a Monte Carlo engine sampling from a discrete choice model. Another important aspect is the interpretation of the MATSim score as utility in the microeconomic sense, opening up a connection to benefit cost analysis. Finally, the book collects use cases as they have been undertaken with MATSim. All current users of MATSim were invited to submit their work, and many followed with sometimes crisp and short and sometimes longer contributions, always with pointers to additional references. We hope that the book will become an invitation to explore, to build and to extend agent-based modeling of travel behavior from the stable and well tested core of MATSim documented here.

Traffic Congestion

Traffic Congestion PDF Author: Alberto Bull
Publisher: Santiago, Chile : United Nations, Economic Commission for Latin America and the Caribbean
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 202

Get Book Here

Book Description


Traffic Flow Dynamics

Traffic Flow Dynamics PDF Author: Martin Treiber
Publisher: Springer Science & Business Media
ISBN: 3642324592
Category : Science
Languages : en
Pages : 505

Get Book Here

Book Description
This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.

Model-Based Machine Learning

Model-Based Machine Learning PDF Author: John Winn
Publisher: CRC Press
ISBN: 1498756824
Category : Business & Economics
Languages : en
Pages : 469

Get Book Here

Book Description
Today, machine learning is being applied to a growing variety of problems in a bewildering variety of domains. A fundamental challenge when using machine learning is connecting the abstract mathematics of a machine learning technique to a concrete, real world problem. This book tackles this challenge through model-based machine learning which focuses on understanding the assumptions encoded in a machine learning system and their corresponding impact on the behaviour of the system. The key ideas of model-based machine learning are introduced through a series of case studies involving real-world applications. Case studies play a central role because it is only in the context of applications that it makes sense to discuss modelling assumptions. Each chapter introduces one case study and works through step-by-step to solve it using a model-based approach. The aim is not just to explain machine learning methods, but also showcase how to create, debug, and evolve them to solve a problem. Features: Explores the assumptions being made by machine learning systems and the effect these assumptions have when the system is applied to concrete problems. Explains machine learning concepts as they arise in real-world case studies. Shows how to diagnose, understand and address problems with machine learning systems. Full source code available, allowing models and results to be reproduced and explored. Includes optional deep-dive sections with more mathematical details on inference algorithms for the interested reader.