Correlation Theory of Stationary and Related Random Functions

Correlation Theory of Stationary and Related Random Functions PDF Author: A.M. Yaglom
Publisher: Springer Science & Business Media
ISBN: 1461246288
Category : Mathematics
Languages : en
Pages : 267

Get Book Here

Book Description
Correlation Theory of Stationary and Related Random Functions is an elementary introduction to the most important part of the theory dealing only with the first and second moments of these functions. This theory is a significant part of modern probability theory and offers both intrinsic mathematical interest and many concrete and practical applications. Stationary random functions arise in connection with stationary time series which are so important in many areas of engineering and other applications. This book presents the theory in such a way that it can be understood by readers without specialized mathematical backgrounds, requiring only the knowledge of elementary calculus. The first volume in this two-volume exposition contains the main theory; the supplementary notes and references of the second volume consist of detailed discussions of more specialized questions, some more additional material (which assumes a more thorough mathematical background than the rest of the book) and numerous references to the extensive literature.

Correlation Theory of Stationary and Related Random Functions

Correlation Theory of Stationary and Related Random Functions PDF Author: A.M. Yaglom
Publisher: Springer Science & Business Media
ISBN: 1461246288
Category : Mathematics
Languages : en
Pages : 267

Get Book Here

Book Description
Correlation Theory of Stationary and Related Random Functions is an elementary introduction to the most important part of the theory dealing only with the first and second moments of these functions. This theory is a significant part of modern probability theory and offers both intrinsic mathematical interest and many concrete and practical applications. Stationary random functions arise in connection with stationary time series which are so important in many areas of engineering and other applications. This book presents the theory in such a way that it can be understood by readers without specialized mathematical backgrounds, requiring only the knowledge of elementary calculus. The first volume in this two-volume exposition contains the main theory; the supplementary notes and references of the second volume consist of detailed discussions of more specialized questions, some more additional material (which assumes a more thorough mathematical background than the rest of the book) and numerous references to the extensive literature.

Basic Results

Basic Results PDF Author: Akiva M. Jaglom
Publisher:
ISBN: 9783540962687
Category :
Languages : en
Pages : 526

Get Book Here

Book Description


An Introduction to the Theory of Stationary Random Functions

An Introduction to the Theory of Stationary Random Functions PDF Author: A. M. Yaglom
Publisher: Courier Corporation
ISBN: 9780486495712
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
This two-part treatment covers the general theory of stationary random functions and the Wiener-Kolmogorov theory of extrapolation and interpolation of random sequences and processes. Beginning with the simplest concepts, it covers the correlation function, the ergodic theorem, homogenous random fields, and general rational spectral densities, among other topics. Numerous examples appear throughout the text, with emphasis on the physical meaning of mathematical concepts. Although rigorous in its treatment, this is essentially an introduction, and the sole prerequisites are a rudimentary knowledge of probability and complex variable theory. 1962 edition.

Correlation Theory of Stationary and Related Random Functions

Correlation Theory of Stationary and Related Random Functions PDF Author: A. M. Yaglom
Publisher: Springer
ISBN: 9780387962689
Category : Mathematics
Languages : en
Pages : 526

Get Book Here

Book Description
The theory of random functions is a very important and advanced part of modem probability theory, which is very interesting from the mathematical point of view and has many practical applications. In applications, one has to deal particularly often with the special case of stationary random functions. Such functions naturally arise when one considers a series of observations x(t) which depend on the real-valued or integer-valued ar gument t ("time") and do not undergo any systematic changes, but only fluctuate in a disordered manner about some constant mean level. Such a time series x(t) must naturally be described statistically, and in that case the stationary random function is the most appropriate statistical model. Stationary time series constantly occur in nearly all the areas of modem technology (in particular, in electrical and radio engineering, electronics, and automatic control) as well as in all the physical and geophysical sciences, in many other ap mechanics, economics, biology and medicine, and also plied fields. One of the important trends in the recent development of science and engineering is the ever-increasing role of the fluctuation phenomena associated with the stationary disordered time series. Moreover, at present, more general classes of random functions related to a class of stationary random functions have also been appearing quite often in various applied studies and hence have acquired great practical importance.

Smoothing Methods in Statistics

Smoothing Methods in Statistics PDF Author: Jeffrey S. Simonoff
Publisher: Springer Science & Business Media
ISBN: 1461240263
Category : Mathematics
Languages : en
Pages : 349

Get Book Here

Book Description
Focussing on applications, this book covers a very broad range, including simple and complex univariate and multivariate density estimation, nonparametric regression estimation, categorical data smoothing, and applications of smoothing to other areas of statistics. It will thus be of particular interest to data analysts, as arguments generally proceed from actual data rather than statistical theory, while the "Background Material" sections will interest statisticians studying the field. Over 750 references allow researchers to find the original sources for more details, and the "Computational Issues" sections provide sources for statistical software that use the methods discussed. Each chapter includes exercises with a heavily computational focus based upon the data sets used in the book, making it equally suitable as a textbook for a course in smoothing.

The Jackknife and Bootstrap

The Jackknife and Bootstrap PDF Author: Jun Shao
Publisher: Springer Science & Business Media
ISBN: 1461207959
Category : Mathematics
Languages : en
Pages : 533

Get Book Here

Book Description
The jackknife and bootstrap are the most popular data-resampling meth ods used in statistical analysis. The resampling methods replace theoreti cal derivations required in applying traditional methods (such as substitu tion and linearization) in statistical analysis by repeatedly resampling the original data and making inferences from the resamples. Because of the availability of inexpensive and fast computing, these computer-intensive methods have caught on very rapidly in recent years and are particularly appreciated by applied statisticians. The primary aims of this book are (1) to provide a systematic introduction to the theory of the jackknife, the bootstrap, and other resampling methods developed in the last twenty years; (2) to provide a guide for applied statisticians: practitioners often use (or misuse) the resampling methods in situations where no theoretical confirmation has been made; and (3) to stimulate the use of the jackknife and bootstrap and further devel opments of the resampling methods. The theoretical properties of the jackknife and bootstrap methods are studied in this book in an asymptotic framework. Theorems are illustrated by examples. Finite sample properties of the jackknife and bootstrap are mostly investigated by examples and/or empirical simulation studies. In addition to the theory for the jackknife and bootstrap methods in problems with independent and identically distributed (Li.d.) data, we try to cover, as much as we can, the applications of the jackknife and bootstrap in various complicated non-Li.d. data problems.

Handbook of Spatial Statistics

Handbook of Spatial Statistics PDF Author: Alan E. Gelfand
Publisher: CRC Press
ISBN: 1420072889
Category : Mathematics
Languages : en
Pages : 622

Get Book Here

Book Description
Assembling a collection of very prominent researchers in the field, the Handbook of Spatial Statistics presents a comprehensive treatment of both classical and state-of-the-art aspects of this maturing area. It takes a unified, integrated approach to the material, providing cross-references among chapters.The handbook begins with a historical intro

Statistics for Spatio-Temporal Data

Statistics for Spatio-Temporal Data PDF Author: Noel Cressie
Publisher: John Wiley & Sons
ISBN: 1119243068
Category : Mathematics
Languages : en
Pages : 596

Get Book Here

Book Description
Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.

Geostatistics

Geostatistics PDF Author: Jean-Paul Chilès
Publisher: John Wiley & Sons
ISBN: 0470183152
Category : Mathematics
Languages : en
Pages : 750

Get Book Here

Book Description
Praise for the First Edition ". . . a readable, comprehensive volume that . . . belongs on the desk, close at hand, of any serious researcher or practitioner." —Mathematical Geosciences The state of the art in geostatistics Geostatistical models and techniques such as kriging and stochastic multi-realizations exploit spatial correlations to evaluate natural resources, help optimize their development, and address environmental issues related to air and water quality, soil pollution, and forestry. Geostatistics: Modeling Spatial Uncertainty, Second Edition presents a comprehensive, up-to-date reference on the topic, now featuring the latest developments in the field. The authors explain both the theory and applications of geostatistics through a unified treatment that emphasizes methodology. Key topics that are the foundation of geostatistics are explored in-depth, including stationary and nonstationary models; linear and nonlinear methods; change of support; multivariate approaches; and conditional simulations. The Second Edition highlights the growing number of applications of geostatistical methods and discusses three key areas of growth in the field: New results and methods, including kriging very large datasets; kriging with outliers; nonse??parable space-time covariances; multipoint simulations; pluri-gaussian simulations; gradual deformation; and extreme value geostatistics Newly formed connections between geostatistics and other approaches such as radial basis functions, Gaussian Markov random fields, and data assimilation New perspectives on topics such as collocated cokriging, kriging with an external drift, discrete Gaussian change-of-support models, and simulation algorithms Geostatistics, Second Edition is an excellent book for courses on the topic at the graduate level. It also serves as an invaluable reference for earth scientists, mining and petroleum engineers, geophysicists, and environmental statisticians who collect and analyze data in their everyday work.

Linear Models

Linear Models PDF Author: C.Radhakrishna Rao
Publisher: Springer Science & Business Media
ISBN: 1489900241
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
The book is based on both authors' several years of experience in teaching linear models at various levels. It gives an up-to-date account of the theory and applications of linear models. The book can be used as a text for courses in statistics at the graduate level and as an accompanying text for courses in other areas. Some of the highlights in this book are as follows. A relatively extensive chapter on matrix theory (Appendix A) provides the necessary tools for proving theorems discussed in the text and offers a selection of classical and modern algebraic results that are useful in research work in econometrics, engineering, and optimization theory. The matrix theory of the last ten years has produced a series of fundamental results about the definiteness of matrices, especially for the differences of matrices, which enable superiority comparisons of two biased estimates to be made for the first time. We have attempted to provide a unified theory of inference from linear models with minimal assumptions. Besides the usual least-squares theory, alternative methods of estimation and testing based on convex loss func tions and general estimating equations are discussed. Special emphasis is given to sensitivity analysis and model selection. A special chapter is devoted to the analysis of categorical data based on logit, loglinear, and logistic regression models. The material covered, theoretical discussion, and its practical applica tions will be useful not only to students but also to researchers and con sultants in statistics.