Convex Variational Problems

Convex Variational Problems PDF Author: Michael Bildhauer
Publisher: Springer
ISBN: 3540448853
Category : Mathematics
Languages : en
Pages : 222

Get Book Here

Book Description
The author emphasizes a non-uniform ellipticity condition as the main approach to regularity theory for solutions of convex variational problems with different types of non-standard growth conditions. This volume first focuses on elliptic variational problems with linear growth conditions. Here the notion of a "solution" is not obvious and the point of view has to be changed several times in order to get some deeper insight. Then the smoothness properties of solutions to convex anisotropic variational problems with superlinear growth are studied. In spite of the fundamental differences, a non-uniform ellipticity condition serves as the main tool towards a unified view of the regularity theory for both kinds of problems.

Convex Variational Problems

Convex Variational Problems PDF Author: Michael Bildhauer
Publisher: Springer
ISBN: 3540448853
Category : Mathematics
Languages : en
Pages : 222

Get Book Here

Book Description
The author emphasizes a non-uniform ellipticity condition as the main approach to regularity theory for solutions of convex variational problems with different types of non-standard growth conditions. This volume first focuses on elliptic variational problems with linear growth conditions. Here the notion of a "solution" is not obvious and the point of view has to be changed several times in order to get some deeper insight. Then the smoothness properties of solutions to convex anisotropic variational problems with superlinear growth are studied. In spite of the fundamental differences, a non-uniform ellipticity condition serves as the main tool towards a unified view of the regularity theory for both kinds of problems.

Sobolev Gradients and Differential Equations

Sobolev Gradients and Differential Equations PDF Author: John Neuberger
Publisher: Springer Science & Business Media
ISBN: 3642040403
Category : Mathematics
Languages : en
Pages : 287

Get Book Here

Book Description
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair portion of the material have in the past been able to use the theory on their own applications and also gain an appreciation of the possibility of a rather comprehensive point of view on the subject of partial differential equations.

Symplectic 4-Manifolds and Algebraic Surfaces

Symplectic 4-Manifolds and Algebraic Surfaces PDF Author: Denis Auroux
Publisher: Springer Science & Business Media
ISBN: 3540782788
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
Modern approaches to the study of symplectic 4-manifolds and algebraic surfaces combine a wide range of techniques and sources of inspiration. Gauge theory, symplectic geometry, pseudoholomorphic curves, singularity theory, moduli spaces, braid groups, monodromy, in addition to classical topology and algebraic geometry, combine to make this one of the most vibrant and active areas of research in mathematics. It is our hope that the five lectures of the present volume given at the C.I.M.E. Summer School held in Cetraro, Italy, September 2-10, 2003 will be useful to people working in related areas of mathematics and will become standard references on these topics. The volume is a coherent exposition of an active field of current research focusing on the introduction of new methods for the study of moduli spaces of complex structures on algebraic surfaces, and for the investigation of symplectic topology in dimension 4 and higher.

Mathematical Theory of Feynman Path Integrals

Mathematical Theory of Feynman Path Integrals PDF Author: Sergio Albeverio
Publisher: Springer Science & Business Media
ISBN: 3540769544
Category : Mathematics
Languages : en
Pages : 184

Get Book Here

Book Description
The 2nd edition of LNM 523 is based on the two first authors' mathematical approach of this theory presented in its 1st edition in 1976. An entire new chapter on the current forefront of research has been added. Except for this new chapter and the correction of a few misprints, the basic material and presentation of the first edition has been maintained. At the end of each chapter the reader will also find notes with further bibliographical information.

Quantum Potential Theory

Quantum Potential Theory PDF Author: Philippe Biane
Publisher: Springer Science & Business Media
ISBN: 3540693645
Category : Mathematics
Languages : en
Pages : 467

Get Book Here

Book Description
This book offers the revised and completed notes of lectures given at the 2007 conference, "Quantum Potential Theory: Structures and Applications to Physics." These lectures provide an introduction to the theory and discuss various applications.

Smooth Ergodic Theory for Endomorphisms

Smooth Ergodic Theory for Endomorphisms PDF Author: Min Qian
Publisher: Springer
ISBN: 3642019544
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
Ideal for researchers and graduate students, this volume sets out a general smooth ergodic theory for deterministic dynamical systems generated by non-invertible endomorphisms. Its focus is on the relations between entropy, Lyapunov exponents and dimensions.

Lectures on Symplectic Geometry

Lectures on Symplectic Geometry PDF Author: Ana Cannas da Silva
Publisher: Springer Science & Business Media
ISBN: 3540421955
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Mathematical Epidemiology

Mathematical Epidemiology PDF Author: Fred Brauer
Publisher: Springer Science & Business Media
ISBN: 3540789103
Category : Medical
Languages : en
Pages : 415

Get Book Here

Book Description
Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downloaded at the web site of the Centre for Disease Modeling (www.cdm.yorku.ca).

The Method of Intrinsic Scaling

The Method of Intrinsic Scaling PDF Author: José Miguel Urbano
Publisher: Springer
ISBN: 3540759328
Category : Mathematics
Languages : en
Pages : 158

Get Book Here

Book Description
This set of lectures, which had its origin in a mini course delivered at the Summer Program of IMPA (Rio de Janeiro), is an introduction to intrinsic scaling, a powerful method in the analysis of degenerate and singular PDEs.In the first part, the theory is presented from scratch for the model case of the degenerate p-Laplace equation. The second part deals with three applications of the theory to relevant models arising from flows in porous media and phase transitions.

Geometric Theory of Discrete Nonautonomous Dynamical Systems

Geometric Theory of Discrete Nonautonomous Dynamical Systems PDF Author: Christian Pötzsche
Publisher: Springer Science & Business Media
ISBN: 3642142575
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
The goal of this book is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes).