Author: Victor Becerra
Publisher: MDPI
ISBN: 3039210300
Category : Technology & Engineering
Languages : en
Pages : 476
Book Description
Unmanned aerial vehicles (UAVs) are being increasingly used in different applications in both military and civilian domains. These applications include surveillance, reconnaissance, remote sensing, target acquisition, border patrol, infrastructure monitoring, aerial imaging, industrial inspection, and emergency medical aid. Vehicles that can be considered autonomous must be able to make decisions and react to events without direct intervention by humans. Although some UAVs are able to perform increasingly complex autonomous manoeuvres, most UAVs are not fully autonomous; instead, they are mostly operated remotely by humans. To make UAVs fully autonomous, many technological and algorithmic developments are still required. For instance, UAVs will need to improve their sensing of obstacles and subsequent avoidance. This becomes particularly important as autonomous UAVs start to operate in civilian airspaces that are occupied by other aircraft. The aim of this volume is to bring together the work of leading researchers and practitioners in the field of unmanned aerial vehicles with a common interest in their autonomy. The contributions that are part of this volume present key challenges associated with the autonomous control of unmanned aerial vehicles, and propose solution methodologies to address such challenges, analyse the proposed methodologies, and evaluate their performance.
Autonomous Control of Unmanned Aerial Vehicles
Author: Victor Becerra
Publisher: MDPI
ISBN: 3039210300
Category : Technology & Engineering
Languages : en
Pages : 476
Book Description
Unmanned aerial vehicles (UAVs) are being increasingly used in different applications in both military and civilian domains. These applications include surveillance, reconnaissance, remote sensing, target acquisition, border patrol, infrastructure monitoring, aerial imaging, industrial inspection, and emergency medical aid. Vehicles that can be considered autonomous must be able to make decisions and react to events without direct intervention by humans. Although some UAVs are able to perform increasingly complex autonomous manoeuvres, most UAVs are not fully autonomous; instead, they are mostly operated remotely by humans. To make UAVs fully autonomous, many technological and algorithmic developments are still required. For instance, UAVs will need to improve their sensing of obstacles and subsequent avoidance. This becomes particularly important as autonomous UAVs start to operate in civilian airspaces that are occupied by other aircraft. The aim of this volume is to bring together the work of leading researchers and practitioners in the field of unmanned aerial vehicles with a common interest in their autonomy. The contributions that are part of this volume present key challenges associated with the autonomous control of unmanned aerial vehicles, and propose solution methodologies to address such challenges, analyse the proposed methodologies, and evaluate their performance.
Publisher: MDPI
ISBN: 3039210300
Category : Technology & Engineering
Languages : en
Pages : 476
Book Description
Unmanned aerial vehicles (UAVs) are being increasingly used in different applications in both military and civilian domains. These applications include surveillance, reconnaissance, remote sensing, target acquisition, border patrol, infrastructure monitoring, aerial imaging, industrial inspection, and emergency medical aid. Vehicles that can be considered autonomous must be able to make decisions and react to events without direct intervention by humans. Although some UAVs are able to perform increasingly complex autonomous manoeuvres, most UAVs are not fully autonomous; instead, they are mostly operated remotely by humans. To make UAVs fully autonomous, many technological and algorithmic developments are still required. For instance, UAVs will need to improve their sensing of obstacles and subsequent avoidance. This becomes particularly important as autonomous UAVs start to operate in civilian airspaces that are occupied by other aircraft. The aim of this volume is to bring together the work of leading researchers and practitioners in the field of unmanned aerial vehicles with a common interest in their autonomy. The contributions that are part of this volume present key challenges associated with the autonomous control of unmanned aerial vehicles, and propose solution methodologies to address such challenges, analyse the proposed methodologies, and evaluate their performance.
Sensing and Control for Autonomous Vehicles
Author: Thor I. Fossen
Publisher: Springer
ISBN: 3319553720
Category : Technology & Engineering
Languages : en
Pages : 513
Book Description
This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite systems. The target audience primarily comprises research experts in the field of control theory, but the book may also be beneficial for graduate students.
Publisher: Springer
ISBN: 3319553720
Category : Technology & Engineering
Languages : en
Pages : 513
Book Description
This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite systems. The target audience primarily comprises research experts in the field of control theory, but the book may also be beneficial for graduate students.
Smart Autonomous Aircraft
Author: Yasmina Bestaoui Sebbane
Publisher: CRC Press
ISBN: 148229916X
Category : Computers
Languages : en
Pages : 434
Book Description
With the extraordinary growth of Unmanned Aerial Vehicles (UAV) in research, military, and commercial contexts, there has been a need for a reference that provides a comprehensive look at the latest research in the area. Filling this void, Smart Autonomous Aircraft: Flight Control and Planning for UAV introduces the advanced methods of flight contr
Publisher: CRC Press
ISBN: 148229916X
Category : Computers
Languages : en
Pages : 434
Book Description
With the extraordinary growth of Unmanned Aerial Vehicles (UAV) in research, military, and commercial contexts, there has been a need for a reference that provides a comprehensive look at the latest research in the area. Filling this void, Smart Autonomous Aircraft: Flight Control and Planning for UAV introduces the advanced methods of flight contr
Time-Critical Cooperative Control of Autonomous Air Vehicles
Author: Isaac Kaminer
Publisher: Butterworth-Heinemann
ISBN: 012809947X
Category : Technology & Engineering
Languages : en
Pages : 272
Book Description
Time-Critical Cooperative Control of Autonomous Air Vehicles presents, in an easy-to-read style, the latest research conducted in the industry, while also introducing a set of novel ideas that illuminate a new approach to problem-solving. The book is virtually self-contained, giving the reader a complete, integrated presentation of the different concepts, mathematical tools, and control solutions needed to tackle and solve a number of problems concerning time-critical cooperative control of UAVs. By including case studies of fixed-wing and multirotor UAVs, the book effectively broadens the scope of application of the methodologies developed. This theoretical presentation is complemented with the results of flight tests with real UAVs, and is an ideal reference for researchers and practitioners from academia, research labs, commercial companies, government workers, and those in the international aerospace industry. - Addresses important topics related to time-critical cooperative control of UAVs - Describes solutions to the problems rooted in solid dynamical systems theory - Applies the solutions developed to fixed-wing and multirotor UAVs - Includes the results of field tests with both classes of UAVs
Publisher: Butterworth-Heinemann
ISBN: 012809947X
Category : Technology & Engineering
Languages : en
Pages : 272
Book Description
Time-Critical Cooperative Control of Autonomous Air Vehicles presents, in an easy-to-read style, the latest research conducted in the industry, while also introducing a set of novel ideas that illuminate a new approach to problem-solving. The book is virtually self-contained, giving the reader a complete, integrated presentation of the different concepts, mathematical tools, and control solutions needed to tackle and solve a number of problems concerning time-critical cooperative control of UAVs. By including case studies of fixed-wing and multirotor UAVs, the book effectively broadens the scope of application of the methodologies developed. This theoretical presentation is complemented with the results of flight tests with real UAVs, and is an ideal reference for researchers and practitioners from academia, research labs, commercial companies, government workers, and those in the international aerospace industry. - Addresses important topics related to time-critical cooperative control of UAVs - Describes solutions to the problems rooted in solid dynamical systems theory - Applies the solutions developed to fixed-wing and multirotor UAVs - Includes the results of field tests with both classes of UAVs
Autonomous Control Systems and Vehicles
Author: Kenzo Nonami
Publisher: Springer Science & Business Media
ISBN: 4431542760
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
The International Conference on Intelligent Unmanned Systems 2011 was organized by the International Society of Intelligent Unmanned Systems and locally by the Center for Bio-Micro Robotics Research at Chiba University, Japan. The event was the 7th conference continuing from previous conferences held in Seoul, Korea (2005, 2006), Bali, Indonesia (2007), Nanjing, China (2008), Jeju, Korea (2009), and Bali, Indonesia (2010). ICIUS 2011 focused on both theory and application, primarily covering the topics of robotics, autonomous vehicles, intelligent unmanned technologies, and biomimetics. We invited seven keynote speakers who dealt with related state-of-the-art technologies including unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs), flapping wings (FWs), unmanned ground vehicles (UGVs), underwater vehicles (UVs), bio-inspired robotics, advanced control, and intelligent systems, among others. This book is a collection of excellent papers that were updated after presentation at ICIUS2011. All papers that form the chapters of this book were reviewed and revised from the perspective of advanced relevant technologies in the field. The aim of this book is to stimulate interactions among researchers active in the areas pertinent to intelligent unmanned systems.
Publisher: Springer Science & Business Media
ISBN: 4431542760
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
The International Conference on Intelligent Unmanned Systems 2011 was organized by the International Society of Intelligent Unmanned Systems and locally by the Center for Bio-Micro Robotics Research at Chiba University, Japan. The event was the 7th conference continuing from previous conferences held in Seoul, Korea (2005, 2006), Bali, Indonesia (2007), Nanjing, China (2008), Jeju, Korea (2009), and Bali, Indonesia (2010). ICIUS 2011 focused on both theory and application, primarily covering the topics of robotics, autonomous vehicles, intelligent unmanned technologies, and biomimetics. We invited seven keynote speakers who dealt with related state-of-the-art technologies including unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs), flapping wings (FWs), unmanned ground vehicles (UGVs), underwater vehicles (UVs), bio-inspired robotics, advanced control, and intelligent systems, among others. This book is a collection of excellent papers that were updated after presentation at ICIUS2011. All papers that form the chapters of this book were reviewed and revised from the perspective of advanced relevant technologies in the field. The aim of this book is to stimulate interactions among researchers active in the areas pertinent to intelligent unmanned systems.
Autonomous Flying Robots
Author: Kenzo Nonami
Publisher: Springer Science & Business Media
ISBN: 4431538569
Category : Technology & Engineering
Languages : en
Pages : 341
Book Description
The advance in robotics has boosted the application of autonomous vehicles to perform tedious and risky tasks or to be cost-effective substitutes for their - man counterparts. Based on their working environment, a rough classi cation of the autonomous vehicles would include unmanned aerial vehicles (UAVs), - manned ground vehicles (UGVs), autonomous underwater vehicles (AUVs), and autonomous surface vehicles (ASVs). UAVs, UGVs, AUVs, and ASVs are called UVs (unmanned vehicles) nowadays. In recent decades, the development of - manned autonomous vehicles have been of great interest, and different kinds of autonomous vehicles have been studied and developed all over the world. In part- ular, UAVs have many applications in emergency situations; humans often cannot come close to a dangerous natural disaster such as an earthquake, a ood, an active volcano, or a nuclear disaster. Since the development of the rst UAVs, research efforts have been focused on military applications. Recently, however, demand has arisen for UAVs such as aero-robotsand ying robotsthat can be used in emergency situations and in industrial applications. Among the wide variety of UAVs that have been developed, small-scale HUAVs (helicopter-based UAVs) have the ability to take off and land vertically as well as the ability to cruise in ight, but their most importantcapability is hovering. Hoveringat a point enables us to make more eff- tive observations of a target. Furthermore, small-scale HUAVs offer the advantages of low cost and easy operation.
Publisher: Springer Science & Business Media
ISBN: 4431538569
Category : Technology & Engineering
Languages : en
Pages : 341
Book Description
The advance in robotics has boosted the application of autonomous vehicles to perform tedious and risky tasks or to be cost-effective substitutes for their - man counterparts. Based on their working environment, a rough classi cation of the autonomous vehicles would include unmanned aerial vehicles (UAVs), - manned ground vehicles (UGVs), autonomous underwater vehicles (AUVs), and autonomous surface vehicles (ASVs). UAVs, UGVs, AUVs, and ASVs are called UVs (unmanned vehicles) nowadays. In recent decades, the development of - manned autonomous vehicles have been of great interest, and different kinds of autonomous vehicles have been studied and developed all over the world. In part- ular, UAVs have many applications in emergency situations; humans often cannot come close to a dangerous natural disaster such as an earthquake, a ood, an active volcano, or a nuclear disaster. Since the development of the rst UAVs, research efforts have been focused on military applications. Recently, however, demand has arisen for UAVs such as aero-robotsand ying robotsthat can be used in emergency situations and in industrial applications. Among the wide variety of UAVs that have been developed, small-scale HUAVs (helicopter-based UAVs) have the ability to take off and land vertically as well as the ability to cruise in ight, but their most importantcapability is hovering. Hoveringat a point enables us to make more eff- tive observations of a target. Furthermore, small-scale HUAVs offer the advantages of low cost and easy operation.
Control of Autonomous Aerial Vehicles
Author: Andrea L'Afflitto
Publisher: Springer Nature
ISBN: 3031397673
Category : Technology & Engineering
Languages : en
Pages : 363
Book Description
Control of Autonomous Aerial Vehicles is an edited book that provides a single-volume snapshot on the state of the art in the field of control theory applied to the design of autonomous unmanned aerial vehicles (UAVs), aka “drones”, employed in a variety of applications. The homogeneous structure allows the reader to transition seamlessly through results in guidance, navigation, and control of UAVs, according to the canonical classification of the main components of a UAV’s autopilot. Each chapter has been written to assist graduate students and practitioners in the fields of aerospace engineering and control theory. The contributing authors duly present detailed literature reviews, conveying their arguments in a systematic way with the help of diagrams, plots, and algorithms. They showcase the applicability of their results by means of flight tests and numerical simulations, the results of which are discussed in detail. Control of Autonomous Aerial Vehicles will interest readers who are researchers, practitioners or graduate students in control theory, autonomous systems or robotics, or in aerospace, mechanical or electrical engineering.
Publisher: Springer Nature
ISBN: 3031397673
Category : Technology & Engineering
Languages : en
Pages : 363
Book Description
Control of Autonomous Aerial Vehicles is an edited book that provides a single-volume snapshot on the state of the art in the field of control theory applied to the design of autonomous unmanned aerial vehicles (UAVs), aka “drones”, employed in a variety of applications. The homogeneous structure allows the reader to transition seamlessly through results in guidance, navigation, and control of UAVs, according to the canonical classification of the main components of a UAV’s autopilot. Each chapter has been written to assist graduate students and practitioners in the fields of aerospace engineering and control theory. The contributing authors duly present detailed literature reviews, conveying their arguments in a systematic way with the help of diagrams, plots, and algorithms. They showcase the applicability of their results by means of flight tests and numerical simulations, the results of which are discussed in detail. Control of Autonomous Aerial Vehicles will interest readers who are researchers, practitioners or graduate students in control theory, autonomous systems or robotics, or in aerospace, mechanical or electrical engineering.
Advances in Unmanned Aerial Vehicles
Author: Kimon P. Valavanis
Publisher: Springer Science & Business Media
ISBN: 1402061145
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
The past decade has seen tremendous interest in the production and refinement of unmanned aerial vehicles, both fixed-wing, such as airplanes and rotary-wing, such as helicopters and vertical takeoff and landing vehicles. This book provides a diversified survey of research and development on small and miniature unmanned aerial vehicles of both fixed and rotary wing designs. From historical background to proposed new applications, this is the most comprehensive reference yet.
Publisher: Springer Science & Business Media
ISBN: 1402061145
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
The past decade has seen tremendous interest in the production and refinement of unmanned aerial vehicles, both fixed-wing, such as airplanes and rotary-wing, such as helicopters and vertical takeoff and landing vehicles. This book provides a diversified survey of research and development on small and miniature unmanned aerial vehicles of both fixed and rotary wing designs. From historical background to proposed new applications, this is the most comprehensive reference yet.
Indoor Navigation Strategies for Aerial Autonomous Systems
Author: Pedro Castillo-Garcia
Publisher: Butterworth-Heinemann
ISBN: 0128053399
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
Indoor Navigation Strategies for Aerial Autonomous Systems presents the necessary and sufficient theoretical basis for those interested in working in unmanned aerial vehicles, providing three different approaches to mathematically represent the dynamics of an aerial vehicle. The book contains detailed information on fusion inertial measurements for orientation stabilization and its validation in flight tests, also proposing substantial theoretical and practical validation for improving the dropped or noised signals. In addition, the book contains different strategies to control and navigate aerial systems. The comprehensive information will be of interest to both researchers and practitioners working in automatic control, mechatronics, robotics, and UAVs, helping them improve research and motivating them to build a test-bed for future projects. - Provides substantial information on nonlinear control approaches and their validation in flight tests - Details in observer-delay schemes that can be applied in real-time - Teaches how an IMU is built and how they can improve the performance of their system when applying observers or predictors - Improves prototypes with tactics for proposed nonlinear schemes
Publisher: Butterworth-Heinemann
ISBN: 0128053399
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
Indoor Navigation Strategies for Aerial Autonomous Systems presents the necessary and sufficient theoretical basis for those interested in working in unmanned aerial vehicles, providing three different approaches to mathematically represent the dynamics of an aerial vehicle. The book contains detailed information on fusion inertial measurements for orientation stabilization and its validation in flight tests, also proposing substantial theoretical and practical validation for improving the dropped or noised signals. In addition, the book contains different strategies to control and navigate aerial systems. The comprehensive information will be of interest to both researchers and practitioners working in automatic control, mechatronics, robotics, and UAVs, helping them improve research and motivating them to build a test-bed for future projects. - Provides substantial information on nonlinear control approaches and their validation in flight tests - Details in observer-delay schemes that can be applied in real-time - Teaches how an IMU is built and how they can improve the performance of their system when applying observers or predictors - Improves prototypes with tactics for proposed nonlinear schemes
Guidance of Unmanned Aerial Vehicles
Author: Rafael Yanushevsky
Publisher: CRC Press
ISBN: 9781439850954
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
Written by an expert with more than 30 years of experience, Guidance of Unmanned Aerial Vehicles contains new analytical results, taken from the author’s research, which can be used for analysis and design of unmanned aerial vehicles guidance and control systems. This book progresses from a clear elucidation of guidance laws and unmanned aerial vehicle dynamics to the modeling of their guidance and control systems. Special attention is paid to guidance of autonomous UAVs, which differs from traditional missile guidance. The author explains UAV applications, contrasting them to a missile’s limited ability (or inability) to control axial acceleration. The discussion of guidance laws for UAVs presents a generalization of missile guidance laws developed by the author. The computational algorithms behind these laws are tested in three applications—for the surveillance problem, the refueling problem, and for the motion control of a swarm of UAVs. The procedure of choosing and testing the guidance laws is also considered in an example of future generation of airborne interceptors launched from UAVs. The author provides an innovative presentation of the theoretical aspects of unmanned aerial vehicles’ guidance that cannot be found in any other book. It presents new ideas that, once crystallized, can be implemented in the new generation of unmanned aerial systems.
Publisher: CRC Press
ISBN: 9781439850954
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
Written by an expert with more than 30 years of experience, Guidance of Unmanned Aerial Vehicles contains new analytical results, taken from the author’s research, which can be used for analysis and design of unmanned aerial vehicles guidance and control systems. This book progresses from a clear elucidation of guidance laws and unmanned aerial vehicle dynamics to the modeling of their guidance and control systems. Special attention is paid to guidance of autonomous UAVs, which differs from traditional missile guidance. The author explains UAV applications, contrasting them to a missile’s limited ability (or inability) to control axial acceleration. The discussion of guidance laws for UAVs presents a generalization of missile guidance laws developed by the author. The computational algorithms behind these laws are tested in three applications—for the surveillance problem, the refueling problem, and for the motion control of a swarm of UAVs. The procedure of choosing and testing the guidance laws is also considered in an example of future generation of airborne interceptors launched from UAVs. The author provides an innovative presentation of the theoretical aspects of unmanned aerial vehicles’ guidance that cannot be found in any other book. It presents new ideas that, once crystallized, can be implemented in the new generation of unmanned aerial systems.