Author: Walter Charles Strodt
Publisher:
ISBN:
Category :
Languages : en
Pages : 81
Book Description
Contributions to the Asymptotic Theory of Ordinary Differential Equations in the Complex Domain
Contributions to the Asymptotic Theory of Ordinary Differential Equations in the Complex Domain
Author: Walter Charles Strodt
Publisher: American Mathematical Soc.
ISBN: 0821812130
Category : Difference equations
Languages : en
Pages : 86
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821812130
Category : Difference equations
Languages : en
Pages : 86
Book Description
Principal Solutions of Ordinary Differential Equations in the Complex Domain
Author: Walter Strodt
Publisher: American Mathematical Soc.
ISBN: 0821812262
Category : Differential equations
Languages : en
Pages : 111
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821812262
Category : Differential equations
Languages : en
Pages : 111
Book Description
Nevanlinna Theory and Complex Differential Equations
Author: Ilpo Laine
Publisher: Walter de Gruyter
ISBN: 3110863146
Category : Mathematics
Languages : en
Pages : 353
Book Description
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.
Publisher: Walter de Gruyter
ISBN: 3110863146
Category : Mathematics
Languages : en
Pages : 353
Book Description
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.
Asymptotic Behavior and Stability Problems in Ordinary Differential Equations
Author: Lamberto Cesari
Publisher: Springer
ISBN: 3662403684
Category : Mathematics
Languages : en
Pages : 278
Book Description
In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matic controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields. The body of research now accumulated is overwhelming, and many books and reports have appeared on one or another of the multiple aspects of the new line of research which some authors call "qualitative theory of differential equations". The purpose of the present volume is to present many of the view points and questions in a readable short report for which completeness is not claimed. The bibliographical notes in each section are intended to be a guide to more detailed expositions and to the original papers. Some traditional topics such as the Sturm comparison theory have been omitted. Also excluded were all those papers, dealing with special differential equations motivated by and intended for the applications.
Publisher: Springer
ISBN: 3662403684
Category : Mathematics
Languages : en
Pages : 278
Book Description
In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matic controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields. The body of research now accumulated is overwhelming, and many books and reports have appeared on one or another of the multiple aspects of the new line of research which some authors call "qualitative theory of differential equations". The purpose of the present volume is to present many of the view points and questions in a readable short report for which completeness is not claimed. The bibliographical notes in each section are intended to be a guide to more detailed expositions and to the original papers. Some traditional topics such as the Sturm comparison theory have been omitted. Also excluded were all those papers, dealing with special differential equations motivated by and intended for the applications.
Asymptotic Behavior of Solutions and Adjunction Fields for Nonlinear First Order Differential Equations
Author: Walter Strodt
Publisher: American Mathematical Soc.
ISBN: 0821818090
Category : Asymptotic expansions
Languages : en
Pages : 287
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821818090
Category : Asymptotic expansions
Languages : en
Pages : 287
Book Description
Asymptotic Differential Algebra and Model Theory of Transseries
Author: Matthias Aschenbrenner
Publisher: Princeton University Press
ISBN: 0691175438
Category : Mathematics
Languages : en
Pages : 873
Book Description
Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.
Publisher: Princeton University Press
ISBN: 0691175438
Category : Mathematics
Languages : en
Pages : 873
Book Description
Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.
Asymptotics of Linear Differential Equations
Author: M.H. Lantsman
Publisher: Springer Science & Business Media
ISBN: 9780792371939
Category : Mathematics
Languages : en
Pages : 462
Book Description
This book is devoted to the asymptotic theory of differential equations. Asymptotic theory is an independent and important branch of mathematical analysis that began to develop at the end of the 19th century. Asymptotic methods' use of several important phenomena of nature can be explained. The main problems considered in the text are based on the notion of an asymptotic space, which was introduced by the author in his works. Asymptotic spaces for asymptotic theory play analogous roles as metric spaces for functional analysis. It allows one to consider many (seemingly) miscellaneous asymptotic problems by means of the same methods and in a compact general form. The book contains the theoretical material and general methods of its application to many partial problems, as well as several new results of asymptotic behavior of functions, integrals, and solutions of differential and difference equations. Audience: The material will be of interest to mathematicians, researchers, and graduate students in the fields of ordinary differential equations, finite differences and functional equations, operator theory, and functional analysis.
Publisher: Springer Science & Business Media
ISBN: 9780792371939
Category : Mathematics
Languages : en
Pages : 462
Book Description
This book is devoted to the asymptotic theory of differential equations. Asymptotic theory is an independent and important branch of mathematical analysis that began to develop at the end of the 19th century. Asymptotic methods' use of several important phenomena of nature can be explained. The main problems considered in the text are based on the notion of an asymptotic space, which was introduced by the author in his works. Asymptotic spaces for asymptotic theory play analogous roles as metric spaces for functional analysis. It allows one to consider many (seemingly) miscellaneous asymptotic problems by means of the same methods and in a compact general form. The book contains the theoretical material and general methods of its application to many partial problems, as well as several new results of asymptotic behavior of functions, integrals, and solutions of differential and difference equations. Audience: The material will be of interest to mathematicians, researchers, and graduate students in the fields of ordinary differential equations, finite differences and functional equations, operator theory, and functional analysis.
Lie Algebras and Lie Groups
Author:
Publisher: American Mathematical Soc.
ISBN: 0821812149
Category : Lie algebras
Languages : en
Pages : 65
Book Description
The American Mathematical Society, with the financial support of the National Science Foundation, held its First Summer Mathematical Institute from June 20 to July 31, 1953. The topic chosen was Lie theory, twenty-nine mathematicians active in this area attended. The six-week period provided opportunity both for the interchange of ideas and for the subsequent shaping of ideas into theorems. The five papers present some results achieved by the participants.--Foreword.
Publisher: American Mathematical Soc.
ISBN: 0821812149
Category : Lie algebras
Languages : en
Pages : 65
Book Description
The American Mathematical Society, with the financial support of the National Science Foundation, held its First Summer Mathematical Institute from June 20 to July 31, 1953. The topic chosen was Lie theory, twenty-nine mathematicians active in this area attended. The six-week period provided opportunity both for the interchange of ideas and for the subsequent shaping of ideas into theorems. The five papers present some results achieved by the participants.--Foreword.
Isoclinic $n$-Planes in Euclidean $2n$-Space, Clifford Parallels in Elliptic $(2n-1)$-Space, and the Hurwitz Matrix Equations
Author: Yung-Chow Wong
Publisher: American Mathematical Soc.
ISBN: 0821812416
Category : Clifford algebras
Languages : en
Pages : 121
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821812416
Category : Clifford algebras
Languages : en
Pages : 121
Book Description