Contributions to Nonlinear Elliptic Equations and Systems

Contributions to Nonlinear Elliptic Equations and Systems PDF Author: Alexandre N. Carvalho
Publisher: Birkhäuser
ISBN: 3319199021
Category : Mathematics
Languages : en
Pages : 434

Get Book Here

Book Description
This volume of contributions pays tribute to the life and work of Djairo Guedes de Figueiredo on the occasion of his 80th birthday. The articles it contains were born out of the ICMC Summer Meeting on Differential Equations – 2014 Chapter, also dedicated to de Figueiredo and held at the Universidade de São Paulo at São Carlos, Brazil from February 3-7, 2014. The contributing authors represent a group of international experts in the field and discuss recent trends and new directions in nonlinear elliptic partial differential equations and systems. Djairo Guedes de Figueiredo has had a very active scientific career, publishing 29 monographs and over one hundred research articles. His influence on Brazilian mathematics has made him one of the pillars of the subject in that country. He had a major impact on the development of analysis, especially in its application to nonlinear elliptic partial differential equations and systems throughout the entire world. The articles collected here pay tribute to him and his legacy and are intended for graduate students and researchers in mathematics and related areas who are interested in nonlinear elliptic partial differential equations and systems.

Direct Methods in the Theory of Elliptic Equations

Direct Methods in the Theory of Elliptic Equations PDF Author: Jindrich Necas
Publisher: Springer Science & Business Media
ISBN: 364210455X
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
Nečas’ book Direct Methods in the Theory of Elliptic Equations, published 1967 in French, has become a standard reference for the mathematical theory of linear elliptic equations and systems. This English edition, translated by G. Tronel and A. Kufner, presents Nečas’ work essentially in the form it was published in 1967. It gives a timeless and in some sense definitive treatment of a number issues in variational methods for elliptic systems and higher order equations. The text is recommended to graduate students of partial differential equations, postdoctoral associates in Analysis, and scientists working with linear elliptic systems. In fact, any researcher using the theory of elliptic systems will benefit from having the book in his library. The volume gives a self-contained presentation of the elliptic theory based on the "direct method", also known as the variational method. Due to its universality and close connections to numerical approximations, the variational method has become one of the most important approaches to the elliptic theory. The method does not rely on the maximum principle or other special properties of the scalar second order elliptic equations, and it is ideally suited for handling systems of equations of arbitrary order. The prototypical examples of equations covered by the theory are, in addition to the standard Laplace equation, Lame’s system of linear elasticity and the biharmonic equation (both with variable coefficients, of course). General ellipticity conditions are discussed and most of the natural boundary condition is covered. The necessary foundations of the function space theory are explained along the way, in an arguably optimal manner. The standard boundary regularity requirement on the domains is the Lipschitz continuity of the boundary, which "when going beyond the scalar equations of second order" turns out to be a very natural class. These choices reflect the author's opinion that the Lame system and the biharmonic equations are just as important as the Laplace equation, and that the class of the domains with the Lipschitz continuous boundary (as opposed to smooth domains) is the most natural class of domains to consider in connection with these equations and their applications.

Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem

Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem PDF Author: Roland Glowinski
Publisher: SIAM
ISBN: 1611973783
Category : Mathematics
Languages : en
Pages : 473

Get Book Here

Book Description
Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems?addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.

Sobolev and Viscosity Solutions for Fully Nonlinear Elliptic and Parabolic Equations

Sobolev and Viscosity Solutions for Fully Nonlinear Elliptic and Parabolic Equations PDF Author: N. V. Krylov
Publisher: American Mathematical Soc.
ISBN: 1470447401
Category : Mathematics
Languages : en
Pages : 458

Get Book Here

Book Description
This book concentrates on first boundary-value problems for fully nonlinear second-order uniformly elliptic and parabolic equations with discontinuous coefficients. We look for solutions in Sobolev classes, local or global, or for viscosity solutions. Most of the auxiliary results, such as Aleksandrov's elliptic and parabolic estimates, the Krylov–Safonov and the Evans–Krylov theorems, are taken from old sources, and the main results were obtained in the last few years. Presentation of these results is based on a generalization of the Fefferman–Stein theorem, on Fang-Hua Lin's like estimates, and on the so-called “ersatz” existence theorems, saying that one can slightly modify “any” equation and get a “cut-off” equation that has solutions with bounded derivatives. These theorems allow us to prove the solvability in Sobolev classes for equations that are quite far from the ones which are convex or concave with respect to the Hessians of the unknown functions. In studying viscosity solutions, these theorems also allow us to deal with classical approximating solutions, thus avoiding sometimes heavy constructions from the usual theory of viscosity solutions.

Elliptic Regularity Theory by Approximation Methods

Elliptic Regularity Theory by Approximation Methods PDF Author: Edgard A. Pimentel
Publisher: Cambridge University Press
ISBN: 1009096664
Category : Mathematics
Languages : en
Pages : 203

Get Book Here

Book Description
A modern account of elliptic regularity theory, with a rigorous presentation of recent developments for fundamental models.

Research Review

Research Review PDF Author: United States. Air Force. Office of Aerospace Research
Publisher:
ISBN:
Category :
Languages : en
Pages : 518

Get Book Here

Book Description


Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105

Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 PDF Author: Mariano Giaquinta
Publisher: Princeton University Press
ISBN: 1400881625
Category : Mathematics
Languages : en
Pages : 309

Get Book Here

Book Description
A classic treatment of multiple integrals in the calculus of variations and nonlinear elliptic systems from the acclaimed Annals of Mathematics Studies series Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. To mark the continued success of the series, all books are available in paperback and as ebooks.

PDE Models for Multi-Agent Phenomena

PDE Models for Multi-Agent Phenomena PDF Author: Pierre Cardaliaguet
Publisher: Springer
ISBN: 3030019470
Category : Mathematics
Languages : en
Pages : 225

Get Book Here

Book Description
This volume covers selected topics addressed and discussed during the workshop “PDE models for multi-agent phenomena,” which was held in Rome, Italy, from November 28th to December 2nd, 2016. The content mainly focuses on kinetic equations and mean field games, which provide a solid framework for the description of multi-agent phenomena. The book includes original contributions on the theoretical and numerical study of the MFG system: the uniqueness issue and finite difference methods for the MFG system, MFG with state constraints, and application of MFG to market competition. The book also presents new contributions on the analysis and numerical approximation of the Fokker-Planck-Kolmogorov equations, the isotropic Landau model, the dynamical approach to the quantization problem and the asymptotic methods for fully nonlinear elliptic equations. Chiefly intended for researchers interested in the mathematical modeling of collective phenomena, the book provides an essential overview of recent advances in the field and outlines future research directions.

Nonlinear Diffusion Equations and Their Equilibrium States II

Nonlinear Diffusion Equations and Their Equilibrium States II PDF Author: W.-M. Ni
Publisher: Springer Science & Business Media
ISBN: 1461396085
Category : Mathematics
Languages : en
Pages : 364

Get Book Here

Book Description
In recent years considerable interest has been focused on nonlinear diffu sion problems, the archetypical equation for these being Ut = ~U + f(u). Here ~ denotes the n-dimensional Laplacian, the solution u = u(x, t) is defined over some space-time domain of the form n x [O,T], and f(u) is a given real function whose form is determined by various physical and mathematical applications. These applications have become more varied and widespread as problem after problem has been shown to lead to an equation of this type or to its time-independent counterpart, the elliptic equation of equilibrium ~u+f(u)=O. Particular cases arise, for example, in population genetics, the physics of nu clear stability, phase transitions between liquids and gases, flows in porous media, the Lend-Emden equation of astrophysics, various simplified com bustion models, and in determining metrics which realize given scalar or Gaussian curvatures. In the latter direction, for example, the problem of finding conformal metrics with prescribed curvature leads to a ground state problem involving critical exponents. Thus not only analysts, but geome ters as well, can find common ground in the present work. The corresponding mathematical problem is to determine how the struc ture of the nonlinear function f(u) influences the behavior of the solution.

Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Numerical Methods for Elliptic and Parabolic Partial Differential Equations PDF Author: Peter Knabner
Publisher: Springer Science & Business Media
ISBN: 038795449X
Category : Mathematics
Languages : en
Pages : 437

Get Book Here

Book Description
This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.