Author: John von Neumann
Publisher: Princeton University Press
ISBN: 1400883954
Category : Mathematics
Languages : en
Pages : 316
Book Description
In his work on rings of operators in Hilbert space, John von Neumann discovered a new mathematical structure that resembled the lattice system Ln. In characterizing its properties, von Neumann founded the field of continuous geometry. This book, based on von Neumann's lecture notes, begins with the development of the axioms of continuous geometry, dimension theory, and--for the irreducible case--the function D(a). The properties of regular rings are then discussed, and a variety of results are presented for lattices that are continuous geometries, for which irreducibility is not assumed. For students and researchers interested in ring theory or projective geometries, this book is required reading.
Continuous Geometry
Author: John von Neumann
Publisher: Princeton University Press
ISBN: 1400883954
Category : Mathematics
Languages : en
Pages : 316
Book Description
In his work on rings of operators in Hilbert space, John von Neumann discovered a new mathematical structure that resembled the lattice system Ln. In characterizing its properties, von Neumann founded the field of continuous geometry. This book, based on von Neumann's lecture notes, begins with the development of the axioms of continuous geometry, dimension theory, and--for the irreducible case--the function D(a). The properties of regular rings are then discussed, and a variety of results are presented for lattices that are continuous geometries, for which irreducibility is not assumed. For students and researchers interested in ring theory or projective geometries, this book is required reading.
Publisher: Princeton University Press
ISBN: 1400883954
Category : Mathematics
Languages : en
Pages : 316
Book Description
In his work on rings of operators in Hilbert space, John von Neumann discovered a new mathematical structure that resembled the lattice system Ln. In characterizing its properties, von Neumann founded the field of continuous geometry. This book, based on von Neumann's lecture notes, begins with the development of the axioms of continuous geometry, dimension theory, and--for the irreducible case--the function D(a). The properties of regular rings are then discussed, and a variety of results are presented for lattices that are continuous geometries, for which irreducibility is not assumed. For students and researchers interested in ring theory or projective geometries, this book is required reading.
Noncommutative Geometry
Author: Alain Connes
Publisher: Academic Press
ISBN: 0080571751
Category : Mathematics
Languages : en
Pages : 678
Book Description
This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields. - First full treatment of the subject and its applications - Written by the pioneer of this field - Broad applications in mathematics - Of interest across most fields - Ideal as an introduction and survey - Examples treated include: - the space of Penrose tilings - the space of leaves of a foliation - the space of irreducible unitary representations of a discrete group - the phase space in quantum mechanics - the Brillouin zone in the quantum Hall effect - A model of space time
Publisher: Academic Press
ISBN: 0080571751
Category : Mathematics
Languages : en
Pages : 678
Book Description
This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields. - First full treatment of the subject and its applications - Written by the pioneer of this field - Broad applications in mathematics - Of interest across most fields - Ideal as an introduction and survey - Examples treated include: - the space of Penrose tilings - the space of leaves of a foliation - the space of irreducible unitary representations of a discrete group - the phase space in quantum mechanics - the Brillouin zone in the quantum Hall effect - A model of space time
Encyclopedic Dictionary of Mathematics
Author: Nihon Sūgakkai
Publisher: MIT Press
ISBN: 9780262590204
Category : Mathematics
Languages : en
Pages : 1180
Book Description
V.1. A.N. v.2. O.Z. Apendices and indexes.
Publisher: MIT Press
ISBN: 9780262590204
Category : Mathematics
Languages : en
Pages : 1180
Book Description
V.1. A.N. v.2. O.Z. Apendices and indexes.
The Complete Dimension Theory of Partially Ordered Systems with Equivalence and Orthogonality
Author: K. R. Goodearl
Publisher: American Mathematical Soc.
ISBN: 0821837168
Category : Mathematics
Languages : en
Pages : 134
Book Description
Introduction Partial commutative monoids Continuous dimension scales Espaliers Classes of espaliers Bibliography Index
Publisher: American Mathematical Soc.
ISBN: 0821837168
Category : Mathematics
Languages : en
Pages : 134
Book Description
Introduction Partial commutative monoids Continuous dimension scales Espaliers Classes of espaliers Bibliography Index
Rings and Things and a Fine Array of Twentieth Century Associative Algebra
Author: Carl Clifton Faith
Publisher: American Mathematical Soc.
ISBN: 0821836722
Category : Mathematics
Languages : en
Pages : 513
Book Description
This book surveys more than 125 years of aspects of associative algebras, especially ring and module theory. It is the first to probe so extensively such a wealth of historical development. Moreover, the author brings the reader up to date, in particular through his report on the subject in the second half of the twentieth century. Included in the book are certain categorical properties from theorems of Frobenius and Stickelberger on the primary decomposition of finite Abelian formulations of the latter by Krull, Goldman, and others; Maschke's theorem on the representation theory of finite groups over a field; and the fundamental theorems of Wedderburn on the structure of finite dimensional algebras Goldie, and others. A special feature of the book is the in-depth study of rings with chain condition on annihilator ideals pioneered by Noether, Artin, and Jacobson and refined and extended by many later mathematicians. Two of the author's prior works, Algebra: Rings, Modules and Categories, I and II (Springer-Verlag, 1973), are devoted to the development of modern associative algebra and ring and module theory. Those bibliography of over 1,600 references and is exhaustively indexed. In addition to the mathematical survey, the author gives candid and descriptive impressions of the last half of the twentieth century in ''Part II: Snapshots of fellow graduate students at the University of Kentucky and at Purdue, Faith discusses his Fulbright-Nato Postdoctoral at Heidelberg and at the Institute for Advanced Study (IAS) at Princeton, his year as a visiting scholar at Berkeley, and the many acquaintances he met there and in subsequent travels in India, Europe, and most recently, Barcelona. Comments on the first edition: ''Researchers in algebra should find it both full references as to the origin and development of the theorem ... I know of no other work in print which does this as thoroughly and as broadly.'' --John O'Neill, University of Detroit at Mercy '' 'Part II: Snapshots of Mathematicians of my age and younger will relish reading 'Snapshots'.'' --James A. Huckaba, University of Missouri-Columbia
Publisher: American Mathematical Soc.
ISBN: 0821836722
Category : Mathematics
Languages : en
Pages : 513
Book Description
This book surveys more than 125 years of aspects of associative algebras, especially ring and module theory. It is the first to probe so extensively such a wealth of historical development. Moreover, the author brings the reader up to date, in particular through his report on the subject in the second half of the twentieth century. Included in the book are certain categorical properties from theorems of Frobenius and Stickelberger on the primary decomposition of finite Abelian formulations of the latter by Krull, Goldman, and others; Maschke's theorem on the representation theory of finite groups over a field; and the fundamental theorems of Wedderburn on the structure of finite dimensional algebras Goldie, and others. A special feature of the book is the in-depth study of rings with chain condition on annihilator ideals pioneered by Noether, Artin, and Jacobson and refined and extended by many later mathematicians. Two of the author's prior works, Algebra: Rings, Modules and Categories, I and II (Springer-Verlag, 1973), are devoted to the development of modern associative algebra and ring and module theory. Those bibliography of over 1,600 references and is exhaustively indexed. In addition to the mathematical survey, the author gives candid and descriptive impressions of the last half of the twentieth century in ''Part II: Snapshots of fellow graduate students at the University of Kentucky and at Purdue, Faith discusses his Fulbright-Nato Postdoctoral at Heidelberg and at the Institute for Advanced Study (IAS) at Princeton, his year as a visiting scholar at Berkeley, and the many acquaintances he met there and in subsequent travels in India, Europe, and most recently, Barcelona. Comments on the first edition: ''Researchers in algebra should find it both full references as to the origin and development of the theorem ... I know of no other work in print which does this as thoroughly and as broadly.'' --John O'Neill, University of Detroit at Mercy '' 'Part II: Snapshots of Mathematicians of my age and younger will relish reading 'Snapshots'.'' --James A. Huckaba, University of Missouri-Columbia
Computing the Continuous Discretely
Author: Matthias Beck
Publisher: Springer
ISBN: 1493929690
Category : Mathematics
Languages : en
Pages : 295
Book Description
This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE
Publisher: Springer
ISBN: 1493929690
Category : Mathematics
Languages : en
Pages : 295
Book Description
This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE
American Mathematical Society Translations
Author: United States. Office of Naval Research
Publisher: American Mathematical Soc.
ISBN: 9780821896051
Category : Mathematics
Languages : en
Pages : 268
Book Description
The articles in this collection present new results in combinatorics, algebra, algebraic geometry, dynamical systems, analysis, and probability. Of particular interest is the survey article by A. N. Kirillov devoted to combinatorics of Young diagrams and related problems of representation theory. Also included are articles devoted to the eightieth birthday of renowned Russian mathematician, V. A. Rokhlin, ``Remembrances of V. A. Rokhlin'', by I. R. Shafarevich, and ``An Unfinished Project of V.A. Rokhlin'', by V. N. Sudakov. The results, ideas, and methods given in the book will be of interest to a broad range of specialists.
Publisher: American Mathematical Soc.
ISBN: 9780821896051
Category : Mathematics
Languages : en
Pages : 268
Book Description
The articles in this collection present new results in combinatorics, algebra, algebraic geometry, dynamical systems, analysis, and probability. Of particular interest is the survey article by A. N. Kirillov devoted to combinatorics of Young diagrams and related problems of representation theory. Also included are articles devoted to the eightieth birthday of renowned Russian mathematician, V. A. Rokhlin, ``Remembrances of V. A. Rokhlin'', by I. R. Shafarevich, and ``An Unfinished Project of V.A. Rokhlin'', by V. N. Sudakov. The results, ideas, and methods given in the book will be of interest to a broad range of specialists.
The Many Valued and Nonmonotonic Turn in Logic
Author: Dov M. Gabbay
Publisher: Elsevier
ISBN: 008054939X
Category : Mathematics
Languages : en
Pages : 691
Book Description
The present volume of the Handbook of the History of Logic brings together two of the most important developments in 20th century non-classical logic. These are many-valuedness and non-monotonicity. On the one approach, in deference to vagueness, temporal or quantum indeterminacy or reference-failure, sentences that are classically non-bivalent are allowed as inputs and outputs to consequence relations. Many-valued, dialetheic, fuzzy and quantum logics are, among other things, principled attempts to regulate the flow-through of sentences that are neither true nor false. On the second, or non-monotonic, approach, constraints are placed on inputs (and sometimes on outputs) of a classical consequence relation, with a view to producing a notion of consequence that serves in a more realistic way the requirements of real-life inference. Many-valued logics produce an interesting problem. Non-bivalent inputs produce classically valid consequence statements, for any choice of outputs. A major task of many-valued logics of all stripes is to fashion an appropriately non-classical relation of consequence.The chief preoccupation of non-monotonic (and default) logicians is how to constrain inputs and outputs of the consequence relation. In what is called "left non-monotonicity, it is forbidden to add new sentences to the inputs of true consequence-statements. The restriction takes notice of the fact that new information will sometimes override an antecedently (and reasonably) derived consequence. In what is called "right non-monotonicity, limitations are imposed on outputs of the consequence relation. Most notably, perhaps, is the requirement that the rule of or-introduction not be given free sway on outputs. Also prominent is the effort of paraconsistent logicians, both preservationist and dialetheic, to limit the outputs of inconsistent inputs, which in classical contexts are wholly unconstrained.In some instances, our two themes coincide. Dialetheic logics are a case in point. Dialetheic logics allow certain selected sentences to have, as a third truth value, the classical values of truth and falsity together. So such logics also admit classically inconsistent inputs. A central task is to construct a right non-monotonic consequence relation that allows for these many-valued, and inconsistent, inputs.The Many Valued and Non-Monotonic Turn in Logic is an indispensable research tool for anyone interested in the development of logic, including researchers, graduate and senior undergraduate students in logic, history of logic, mathematics, history of mathematics, computer science, AI, linguistics, cognitive science, argumentation theory, and the history of ideas. - Detailed and comprehensive chapters covering the entire range of modal logic. - Contains the latest scholarly discoveries and interprative insights that answers many questions in the field of logic.
Publisher: Elsevier
ISBN: 008054939X
Category : Mathematics
Languages : en
Pages : 691
Book Description
The present volume of the Handbook of the History of Logic brings together two of the most important developments in 20th century non-classical logic. These are many-valuedness and non-monotonicity. On the one approach, in deference to vagueness, temporal or quantum indeterminacy or reference-failure, sentences that are classically non-bivalent are allowed as inputs and outputs to consequence relations. Many-valued, dialetheic, fuzzy and quantum logics are, among other things, principled attempts to regulate the flow-through of sentences that are neither true nor false. On the second, or non-monotonic, approach, constraints are placed on inputs (and sometimes on outputs) of a classical consequence relation, with a view to producing a notion of consequence that serves in a more realistic way the requirements of real-life inference. Many-valued logics produce an interesting problem. Non-bivalent inputs produce classically valid consequence statements, for any choice of outputs. A major task of many-valued logics of all stripes is to fashion an appropriately non-classical relation of consequence.The chief preoccupation of non-monotonic (and default) logicians is how to constrain inputs and outputs of the consequence relation. In what is called "left non-monotonicity, it is forbidden to add new sentences to the inputs of true consequence-statements. The restriction takes notice of the fact that new information will sometimes override an antecedently (and reasonably) derived consequence. In what is called "right non-monotonicity, limitations are imposed on outputs of the consequence relation. Most notably, perhaps, is the requirement that the rule of or-introduction not be given free sway on outputs. Also prominent is the effort of paraconsistent logicians, both preservationist and dialetheic, to limit the outputs of inconsistent inputs, which in classical contexts are wholly unconstrained.In some instances, our two themes coincide. Dialetheic logics are a case in point. Dialetheic logics allow certain selected sentences to have, as a third truth value, the classical values of truth and falsity together. So such logics also admit classically inconsistent inputs. A central task is to construct a right non-monotonic consequence relation that allows for these many-valued, and inconsistent, inputs.The Many Valued and Non-Monotonic Turn in Logic is an indispensable research tool for anyone interested in the development of logic, including researchers, graduate and senior undergraduate students in logic, history of logic, mathematics, history of mathematics, computer science, AI, linguistics, cognitive science, argumentation theory, and the history of ideas. - Detailed and comprehensive chapters covering the entire range of modal logic. - Contains the latest scholarly discoveries and interprative insights that answers many questions in the field of logic.
Computing in Geographic Information Systems
Author: Narayan Panigrahi
Publisher: CRC Press
ISBN: 1482223163
Category : Mathematics
Languages : en
Pages : 294
Book Description
Capable of acquiring large volumes of data through sensors deployed in air, land, and sea, and making this information readily available in a continuous time frame, the science of geographical information system (GIS) is rapidly evolving. This popular information system is emerging as a platform for scientific visualization, simulation, and computa
Publisher: CRC Press
ISBN: 1482223163
Category : Mathematics
Languages : en
Pages : 294
Book Description
Capable of acquiring large volumes of data through sensors deployed in air, land, and sea, and making this information readily available in a continuous time frame, the science of geographical information system (GIS) is rapidly evolving. This popular information system is emerging as a platform for scientific visualization, simulation, and computa
Encyclopaedia of the History of Science, Technology, and Medicine in Non-Westen Cultures
Author: Helaine Selin
Publisher: Springer Science & Business Media
ISBN: 9401714169
Category : History
Languages : en
Pages : 1140
Book Description
The Encyclopaedia fills a gap in both the history of science and in cultural stud ies. Reference works on other cultures tend either to omit science completely or pay little attention to it, and those on the history of science almost always start with the Greeks, with perhaps a mention of the Islamic world as a trans lator of Greek scientific works. The purpose of the Encyclopaedia is to bring together knowledge of many disparate fields in one place and to legitimize the study of other cultures' science. Our aim is not to claim the superiority of other cultures, but to engage in a mutual exchange of ideas. The Western aca demic divisions of science, technology, and medicine have been united in the Encyclopaedia because in ancient cultures these disciplines were connected. This work contributes to redressing the balance in the number of reference works devoted to the study of Western science, and encourages awareness of cultural diversity. The Encyclopaedia is the first compilation of this sort, and it is testimony both to the earlier Eurocentric view of academia as well as to the widened vision of today. There is nothing that crosses disciplinary and geographic boundaries, dealing with both scientific and philosophical issues, to the extent that this work does. xi PERSONAL NOTE FROM THE EDITOR Many years ago I taught African history at a secondary school in Central Africa.
Publisher: Springer Science & Business Media
ISBN: 9401714169
Category : History
Languages : en
Pages : 1140
Book Description
The Encyclopaedia fills a gap in both the history of science and in cultural stud ies. Reference works on other cultures tend either to omit science completely or pay little attention to it, and those on the history of science almost always start with the Greeks, with perhaps a mention of the Islamic world as a trans lator of Greek scientific works. The purpose of the Encyclopaedia is to bring together knowledge of many disparate fields in one place and to legitimize the study of other cultures' science. Our aim is not to claim the superiority of other cultures, but to engage in a mutual exchange of ideas. The Western aca demic divisions of science, technology, and medicine have been united in the Encyclopaedia because in ancient cultures these disciplines were connected. This work contributes to redressing the balance in the number of reference works devoted to the study of Western science, and encourages awareness of cultural diversity. The Encyclopaedia is the first compilation of this sort, and it is testimony both to the earlier Eurocentric view of academia as well as to the widened vision of today. There is nothing that crosses disciplinary and geographic boundaries, dealing with both scientific and philosophical issues, to the extent that this work does. xi PERSONAL NOTE FROM THE EDITOR Many years ago I taught African history at a secondary school in Central Africa.