Author: Bernardo Cockburn
Publisher: Springer Science & Business Media
ISBN: 3642597211
Category : Mathematics
Languages : en
Pages : 468
Book Description
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.
Discontinuous Galerkin Methods
Author: Bernardo Cockburn
Publisher: Springer Science & Business Media
ISBN: 3642597211
Category : Mathematics
Languages : en
Pages : 468
Book Description
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.
Publisher: Springer Science & Business Media
ISBN: 3642597211
Category : Mathematics
Languages : en
Pages : 468
Book Description
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.
Applied Stochastic Differential Equations
Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Automated Solution of Differential Equations by the Finite Element Method
Author: Anders Logg
Publisher: Springer Science & Business Media
ISBN: 3642230997
Category : Computers
Languages : en
Pages : 723
Book Description
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
Publisher: Springer Science & Business Media
ISBN: 3642230997
Category : Computers
Languages : en
Pages : 723
Book Description
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
The Mathematics of Reservoir Simulation
Author: Richard E. Ewing
Publisher: SIAM
ISBN: 0898716624
Category : Science
Languages : en
Pages : 195
Book Description
This book describes the state of the art of the mathematical theory and numerical analysis of imaging. Some of the applications covered in the book include computerized tomography, magnetic resonance imaging, emission tomography, electron microscopy, ultrasound transmission tomography, industrial tomography, seismic tomography, impedance tomography, and NIR imaging.
Publisher: SIAM
ISBN: 0898716624
Category : Science
Languages : en
Pages : 195
Book Description
This book describes the state of the art of the mathematical theory and numerical analysis of imaging. Some of the applications covered in the book include computerized tomography, magnetic resonance imaging, emission tomography, electron microscopy, ultrasound transmission tomography, industrial tomography, seismic tomography, impedance tomography, and NIR imaging.
Numerical Approximations of Stochastic Maxwell Equations
Author: Chuchu Chen
Publisher: Springer Nature
ISBN: 9819966868
Category : Mathematics
Languages : en
Pages : 293
Book Description
The stochastic Maxwell equations play an essential role in many fields, including fluctuational electrodynamics, statistical radiophysics, integrated circuits, and stochastic inverse problems. This book provides some recent advances in the investigation of numerical approximations of the stochastic Maxwell equations via structure-preserving algorithms. It presents an accessible overview of the construction and analysis of structure-preserving algorithms with an emphasis on the preservation of geometric structures, physical properties, and asymptotic behaviors of the stochastic Maxwell equations. A friendly introduction to the simulation of the stochastic Maxwell equations with some structure-preserving algorithms is provided using MATLAB for the reader’s convenience. The objects considered in this book are related to several fascinating mathematical fields: numerical analysis, stochastic analysis, (multi-)symplectic geometry, large deviations principle, ergodic theory, partial differential equation, probability theory, etc. This book will appeal to researchers who are interested in these topics.
Publisher: Springer Nature
ISBN: 9819966868
Category : Mathematics
Languages : en
Pages : 293
Book Description
The stochastic Maxwell equations play an essential role in many fields, including fluctuational electrodynamics, statistical radiophysics, integrated circuits, and stochastic inverse problems. This book provides some recent advances in the investigation of numerical approximations of the stochastic Maxwell equations via structure-preserving algorithms. It presents an accessible overview of the construction and analysis of structure-preserving algorithms with an emphasis on the preservation of geometric structures, physical properties, and asymptotic behaviors of the stochastic Maxwell equations. A friendly introduction to the simulation of the stochastic Maxwell equations with some structure-preserving algorithms is provided using MATLAB for the reader’s convenience. The objects considered in this book are related to several fascinating mathematical fields: numerical analysis, stochastic analysis, (multi-)symplectic geometry, large deviations principle, ergodic theory, partial differential equation, probability theory, etc. This book will appeal to researchers who are interested in these topics.
Numerical Differential Equations: Theory And Technique, Ode Methods, Finite Differences, Finite Elements And Collocation
Author: John Loustau
Publisher: World Scientific
ISBN: 981471951X
Category : Mathematics
Languages : en
Pages : 384
Book Description
This text presents numerical differential equations to graduate (doctoral) students. It includes the three standard approaches to numerical PDE, FDM, FEM and CM, and the two most common time stepping techniques, FDM and Runge-Kutta. We present both the numerical technique and the supporting theory.The applied techniques include those that arise in the present literature. The supporting mathematical theory includes the general convergence theory. This material should be readily accessible to students with basic knowledge of mathematical analysis, Lebesgue measure and the basics of Hilbert spaces and Banach spaces. Nevertheless, we have made the book free standing in most respects. Most importantly, the terminology is introduced, explained and developed as needed.The examples presented are taken from multiple vital application areas including finance, aerospace, mathematical biology and fluid mechanics. The text may be used as the basis for several distinct lecture courses or as a reference. For instance, this text will support a general applications course or an FEM course with theory and applications. The presentation of material is empirically-based as more and more is demanded of the reader as we progress through the material. By the end of the text, the level of detail is reminiscent of journal articles. Indeed, it is our intention that this material be used to launch a research career in numerical PDE.
Publisher: World Scientific
ISBN: 981471951X
Category : Mathematics
Languages : en
Pages : 384
Book Description
This text presents numerical differential equations to graduate (doctoral) students. It includes the three standard approaches to numerical PDE, FDM, FEM and CM, and the two most common time stepping techniques, FDM and Runge-Kutta. We present both the numerical technique and the supporting theory.The applied techniques include those that arise in the present literature. The supporting mathematical theory includes the general convergence theory. This material should be readily accessible to students with basic knowledge of mathematical analysis, Lebesgue measure and the basics of Hilbert spaces and Banach spaces. Nevertheless, we have made the book free standing in most respects. Most importantly, the terminology is introduced, explained and developed as needed.The examples presented are taken from multiple vital application areas including finance, aerospace, mathematical biology and fluid mechanics. The text may be used as the basis for several distinct lecture courses or as a reference. For instance, this text will support a general applications course or an FEM course with theory and applications. The presentation of material is empirically-based as more and more is demanded of the reader as we progress through the material. By the end of the text, the level of detail is reminiscent of journal articles. Indeed, it is our intention that this material be used to launch a research career in numerical PDE.
Simulation of Flow in Porous Media
Author: Peter Bastian
Publisher: Walter de Gruyter
ISBN: 3110282240
Category : Mathematics
Languages : en
Pages : 224
Book Description
Subsurface flow problems are inherently multiscale in space due to the large variability of material properties and in time due to the coupling of many different physical processes, such as advection, diffusion, reaction and phase exchange. Subsurface flow models still need considerable development. For example, nonequilibrium effects, entrapped air, anomalous dispersion and hysteresis effects can still not be adequately described. Moreover, parameters of the models are diffcult to access and often uncertain. Computational issues in subsurface flows include the treatment of strong heterogeneities and anisotropies in the models, the effcient solution of transport-reaction problems with many species, treatment of multiphase-multicomponent flows and the coupling of subsurface flow models to surface flow models given by shallow water or Stokes equations. With respect to energy and the environment, in particular the modelling and simulation of radioactive waste management and sequestration of CO2 underground have gained high interest in the community in recent years. Both applications provide unique challenges ranging from modelling of clay materials to treating very large scale models with high-performance computing. This book brings together key numerical mathematicians whose interest is in the analysis and computation of multiscale subsurface flow and practitioners from engineering and industry whose interest is in the applications of these core problems.
Publisher: Walter de Gruyter
ISBN: 3110282240
Category : Mathematics
Languages : en
Pages : 224
Book Description
Subsurface flow problems are inherently multiscale in space due to the large variability of material properties and in time due to the coupling of many different physical processes, such as advection, diffusion, reaction and phase exchange. Subsurface flow models still need considerable development. For example, nonequilibrium effects, entrapped air, anomalous dispersion and hysteresis effects can still not be adequately described. Moreover, parameters of the models are diffcult to access and often uncertain. Computational issues in subsurface flows include the treatment of strong heterogeneities and anisotropies in the models, the effcient solution of transport-reaction problems with many species, treatment of multiphase-multicomponent flows and the coupling of subsurface flow models to surface flow models given by shallow water or Stokes equations. With respect to energy and the environment, in particular the modelling and simulation of radioactive waste management and sequestration of CO2 underground have gained high interest in the community in recent years. Both applications provide unique challenges ranging from modelling of clay materials to treating very large scale models with high-performance computing. This book brings together key numerical mathematicians whose interest is in the analysis and computation of multiscale subsurface flow and practitioners from engineering and industry whose interest is in the applications of these core problems.
ICIAM 07
Author: Rolf Jeltsch
Publisher: European Mathematical Society
ISBN: 9783037190562
Category : Mathematics
Languages : en
Pages : 528
Book Description
The International Council for Industrial and Applied Mathematics (ICIAM) is the worldwide organization of societies which are dedicated primarily or significantly to applied and/or industrial mathematics. The ICIAM Congresses, held every 4 years, are run under the auspices of the Council with the aim to advance the applications of mathematics in all parts of the world. The Sixth ICIAM Congress was held in Zurich, Switzerland, July 16-20, 2007, and was attended by more than 3000 scientists from 47 countries. This volume collects the invited lectures of this Congress, the appreciations of the ICIAM Prize winners' achievements, and the Euler Lecture celebrating the 300th anniversary of Euler. The authors of these papers are leading researchers in their fields, rigorously selected by a distinguished international program committee. The book presents an overview of contemporary applications of mathematics, new perspectives, and open problems. Topics embrace analysis of and numerical methods for: linear and nonlinear partial differential equations multiscale modeling nonlinear problems involving integral operators controllability and observability asymptotic solutions of Hamilton-Jacobi equations contact problems in solid mechanics topology optimization of structures dissipation inequalities in systems theory greedy algorithms sampling in function space order-value optimization parabolic partial differential equations and deterministic games Moreover, particular applications involve risk in financial markets, radar imaging, brain dynamics, and complex geometric optics applied to acoustics and electromagnetics.
Publisher: European Mathematical Society
ISBN: 9783037190562
Category : Mathematics
Languages : en
Pages : 528
Book Description
The International Council for Industrial and Applied Mathematics (ICIAM) is the worldwide organization of societies which are dedicated primarily or significantly to applied and/or industrial mathematics. The ICIAM Congresses, held every 4 years, are run under the auspices of the Council with the aim to advance the applications of mathematics in all parts of the world. The Sixth ICIAM Congress was held in Zurich, Switzerland, July 16-20, 2007, and was attended by more than 3000 scientists from 47 countries. This volume collects the invited lectures of this Congress, the appreciations of the ICIAM Prize winners' achievements, and the Euler Lecture celebrating the 300th anniversary of Euler. The authors of these papers are leading researchers in their fields, rigorously selected by a distinguished international program committee. The book presents an overview of contemporary applications of mathematics, new perspectives, and open problems. Topics embrace analysis of and numerical methods for: linear and nonlinear partial differential equations multiscale modeling nonlinear problems involving integral operators controllability and observability asymptotic solutions of Hamilton-Jacobi equations contact problems in solid mechanics topology optimization of structures dissipation inequalities in systems theory greedy algorithms sampling in function space order-value optimization parabolic partial differential equations and deterministic games Moreover, particular applications involve risk in financial markets, radar imaging, brain dynamics, and complex geometric optics applied to acoustics and electromagnetics.
Advanced Numerical Methods in Applied Sciences
Author: Luigi Brugnano
Publisher: MDPI
ISBN: 3038976660
Category : Juvenile Nonfiction
Languages : en
Pages : 306
Book Description
The use of scientific computing tools is currently customary for solving problems at several complexity levels in Applied Sciences. The great need for reliable software in the scientific community conveys a continuous stimulus to develop new and better performing numerical methods that are able to grasp the particular features of the problem at hand. This has been the case for many different settings of numerical analysis, and this Special Issue aims at covering some important developments in various areas of application.
Publisher: MDPI
ISBN: 3038976660
Category : Juvenile Nonfiction
Languages : en
Pages : 306
Book Description
The use of scientific computing tools is currently customary for solving problems at several complexity levels in Applied Sciences. The great need for reliable software in the scientific community conveys a continuous stimulus to develop new and better performing numerical methods that are able to grasp the particular features of the problem at hand. This has been the case for many different settings of numerical analysis, and this Special Issue aims at covering some important developments in various areas of application.
Discontinuous Galerkin Method
Author: Vít Dolejší
Publisher: Springer
ISBN: 3319192671
Category : Mathematics
Languages : en
Pages : 575
Book Description
The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.
Publisher: Springer
ISBN: 3319192671
Category : Mathematics
Languages : en
Pages : 575
Book Description
The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.