Author: Jianqing Fan
Publisher: Springer Nature
ISBN: 3030461610
Category : Mathematics
Languages : en
Pages : 384
Book Description
The collection and analysis of data play an important role in many fields of science and technology, such as computational biology, quantitative finance, information engineering, machine learning, neuroscience, medicine, and the social sciences. Especially in the era of big data, researchers can easily collect data characterised by massive dimensions and complexity. In celebration of Professor Kai-Tai Fang’s 80th birthday, we present this book, which furthers new and exciting developments in modern statistical theories, methods and applications. The book features four review papers on Professor Fang’s numerous contributions to the fields of experimental design, multivariate analysis, data mining and education. It also contains twenty research articles contributed by prominent and active figures in their fields. The articles cover a wide range of important topics such as experimental design, multivariate analysis, data mining, hypothesis testing and statistical models.
Contemporary Experimental Design, Multivariate Analysis and Data Mining
Author: Jianqing Fan
Publisher: Springer Nature
ISBN: 3030461610
Category : Mathematics
Languages : en
Pages : 384
Book Description
The collection and analysis of data play an important role in many fields of science and technology, such as computational biology, quantitative finance, information engineering, machine learning, neuroscience, medicine, and the social sciences. Especially in the era of big data, researchers can easily collect data characterised by massive dimensions and complexity. In celebration of Professor Kai-Tai Fang’s 80th birthday, we present this book, which furthers new and exciting developments in modern statistical theories, methods and applications. The book features four review papers on Professor Fang’s numerous contributions to the fields of experimental design, multivariate analysis, data mining and education. It also contains twenty research articles contributed by prominent and active figures in their fields. The articles cover a wide range of important topics such as experimental design, multivariate analysis, data mining, hypothesis testing and statistical models.
Publisher: Springer Nature
ISBN: 3030461610
Category : Mathematics
Languages : en
Pages : 384
Book Description
The collection and analysis of data play an important role in many fields of science and technology, such as computational biology, quantitative finance, information engineering, machine learning, neuroscience, medicine, and the social sciences. Especially in the era of big data, researchers can easily collect data characterised by massive dimensions and complexity. In celebration of Professor Kai-Tai Fang’s 80th birthday, we present this book, which furthers new and exciting developments in modern statistical theories, methods and applications. The book features four review papers on Professor Fang’s numerous contributions to the fields of experimental design, multivariate analysis, data mining and education. It also contains twenty research articles contributed by prominent and active figures in their fields. The articles cover a wide range of important topics such as experimental design, multivariate analysis, data mining, hypothesis testing and statistical models.
Quality Control of Chinese Medicines
Author: Shaoping Li
Publisher: Springer Nature
ISBN: 9819998719
Category :
Languages : en
Pages : 879
Book Description
Publisher: Springer Nature
ISBN: 9819998719
Category :
Languages : en
Pages : 879
Book Description
Advances in Artificial and Human Intelligence in the Modern Era
Author: Rajest, S. Suman
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 433
Book Description
In the realm of psychological and brain sciences, there is a growing urgency to refine individual performance using personalized interventions that account for unique cognitive and biological attributes. Yet, the quest for such tailored approaches has proven challenging, as conventional methods often fall short. The limited integration of domain expertise and human judgment curtails the potential of artificial intelligence (AI) in effectively optimizing human performance, particularly in areas like customized training, health monitoring, and cognitive enhancement. Bridging the gap between AI capabilities and the specific requirements of individuals becomes crucial in meeting this rising demand. Advances in Artificial and Human Intelligence in the Modern Era present a transformative solution to tackle the prevailing challenges at the intersection of AI and human performance enhancement. This book delves deeply into the latest empirical research, literature reviews, and methodological advancements to introduce precision AI techniques for personalized interventions. By examining how the amalgamation of domain expertise and human insights can enhance AI performance, the book establishes a comprehensive framework for modeling individual distinctions and devising effective, tailored AI approaches. Tailored for academic scholars and researchers in psychological and brain sciences, computer science, and related fields, this book provides a comprehensive exploration of pioneering advancements in the convergence of artificial and human intelligence. Its diverse chapters encompass a wide array of topics, including the identification of mental health concerns, integration of human intelligence into AI tools, enhancement of reliability, and exploration of data standards. As it fuses expertise from these two disciplines, the book paves the way for a new era of personalized interventions with the potential to revolutionize human cognitive enhancement, training, and overall well-being.
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 433
Book Description
In the realm of psychological and brain sciences, there is a growing urgency to refine individual performance using personalized interventions that account for unique cognitive and biological attributes. Yet, the quest for such tailored approaches has proven challenging, as conventional methods often fall short. The limited integration of domain expertise and human judgment curtails the potential of artificial intelligence (AI) in effectively optimizing human performance, particularly in areas like customized training, health monitoring, and cognitive enhancement. Bridging the gap between AI capabilities and the specific requirements of individuals becomes crucial in meeting this rising demand. Advances in Artificial and Human Intelligence in the Modern Era present a transformative solution to tackle the prevailing challenges at the intersection of AI and human performance enhancement. This book delves deeply into the latest empirical research, literature reviews, and methodological advancements to introduce precision AI techniques for personalized interventions. By examining how the amalgamation of domain expertise and human insights can enhance AI performance, the book establishes a comprehensive framework for modeling individual distinctions and devising effective, tailored AI approaches. Tailored for academic scholars and researchers in psychological and brain sciences, computer science, and related fields, this book provides a comprehensive exploration of pioneering advancements in the convergence of artificial and human intelligence. Its diverse chapters encompass a wide array of topics, including the identification of mental health concerns, integration of human intelligence into AI tools, enhancement of reliability, and exploration of data standards. As it fuses expertise from these two disciplines, the book paves the way for a new era of personalized interventions with the potential to revolutionize human cognitive enhancement, training, and overall well-being.
Probability-Based Multi-objective Optimization for Material Selection
Author: Maosheng Zheng
Publisher: Springer Nature
ISBN: 9819939399
Category : Technology & Engineering
Languages : en
Pages : 214
Book Description
The second edition of this book illuminates the fundamental principle and applications of probability-based multi-objective optimization for material selection in viewpoint of system theory, in which a brand new concept of preferable probability and its assessment as well as other treatments are introduced by authors for the first time. Hybrids of the new approach with experimental design methodologies (response surface methodology, orthogonal experimental design, and uniform experimental design) are all performed; robustness assessment and performance utility with desirable value are included; discretization treatment in the evaluation is presented; fuzzy-based approach and cluster analysis are involved; applications in portfolio investment and shortest path problem are concerned as well. The authors wish this work will cast a brick to attract jade and would make its contributions to relevant fields as a paving stone. It is designed to be used as a textbook for postgraduate and advanced undergraduate students in relevant majors, while also serving as a valuable reference book for scientists and engineers involved in related fields.
Publisher: Springer Nature
ISBN: 9819939399
Category : Technology & Engineering
Languages : en
Pages : 214
Book Description
The second edition of this book illuminates the fundamental principle and applications of probability-based multi-objective optimization for material selection in viewpoint of system theory, in which a brand new concept of preferable probability and its assessment as well as other treatments are introduced by authors for the first time. Hybrids of the new approach with experimental design methodologies (response surface methodology, orthogonal experimental design, and uniform experimental design) are all performed; robustness assessment and performance utility with desirable value are included; discretization treatment in the evaluation is presented; fuzzy-based approach and cluster analysis are involved; applications in portfolio investment and shortest path problem are concerned as well. The authors wish this work will cast a brick to attract jade and would make its contributions to relevant fields as a paving stone. It is designed to be used as a textbook for postgraduate and advanced undergraduate students in relevant majors, while also serving as a valuable reference book for scientists and engineers involved in related fields.
Modern Experimental Design
Author: Thomas P. Ryan
Publisher: John Wiley & Sons
ISBN: 0470074345
Category : Mathematics
Languages : en
Pages : 620
Book Description
A complete and well-balanced introduction to modern experimental design Using current research and discussion of the topic along with clear applications, Modern Experimental Design highlights the guiding role of statistical principles in experimental design construction. This text can serve as both an applied introduction as well as a concise review of the essential types of experimental designs and their applications. Topical coverage includes designs containing one or multiple factors, designs with at least one blocking factor, split-unit designs and their variations as well as supersaturated and Plackett-Burman designs. In addition, the text contains extensive treatment of: Conditional effects analysis as a proposed general method of analysis Multiresponse optimization Space-filling designs, including Latin hypercube and uniform designs Restricted regions of operability and debarred observations Analysis of Means (ANOM) used to analyze data from various types of designs The application of available software, including Design-Expert, JMP, and MINITAB This text provides thorough coverage of the topic while also introducing the reader to new approaches. Using a large number of references with detailed analyses of datasets, Modern Experimental Design works as a well-rounded learning tool for beginners as well as a valuable resource for practitioners.
Publisher: John Wiley & Sons
ISBN: 0470074345
Category : Mathematics
Languages : en
Pages : 620
Book Description
A complete and well-balanced introduction to modern experimental design Using current research and discussion of the topic along with clear applications, Modern Experimental Design highlights the guiding role of statistical principles in experimental design construction. This text can serve as both an applied introduction as well as a concise review of the essential types of experimental designs and their applications. Topical coverage includes designs containing one or multiple factors, designs with at least one blocking factor, split-unit designs and their variations as well as supersaturated and Plackett-Burman designs. In addition, the text contains extensive treatment of: Conditional effects analysis as a proposed general method of analysis Multiresponse optimization Space-filling designs, including Latin hypercube and uniform designs Restricted regions of operability and debarred observations Analysis of Means (ANOM) used to analyze data from various types of designs The application of available software, including Design-Expert, JMP, and MINITAB This text provides thorough coverage of the topic while also introducing the reader to new approaches. Using a large number of references with detailed analyses of datasets, Modern Experimental Design works as a well-rounded learning tool for beginners as well as a valuable resource for practitioners.
Multivariate Analysis in the Pharmaceutical Industry
Author: Ana Patricia Ferreira
Publisher: Academic Press
ISBN: 012811066X
Category : Medical
Languages : en
Pages : 465
Book Description
Multivariate Analysis in the Pharmaceutical Industry provides industry practitioners with guidance on multivariate data methods and their applications over the lifecycle of a pharmaceutical product, from process development, to routine manufacturing, focusing on the challenges specific to each step. It includes an overview of regulatory guidance specific to the use of these methods, along with perspectives on the applications of these methods that allow for testing, monitoring and controlling products and processes. The book seeks to put multivariate analysis into a pharmaceutical context for the benefit of pharmaceutical practitioners, potential practitioners, managers and regulators. Users will find a resources that addresses an unmet need on how pharmaceutical industry professionals can extract value from data that is routinely collected on products and processes, especially as these techniques become more widely used, and ultimately, expected by regulators. - Targets pharmaceutical industry practitioners and regulatory staff by addressing industry specific challenges - Includes case studies from different pharmaceutical companies and across product lifecycle of to introduce readers to the breadth of applications - Contains information on the current regulatory framework which will shape how multivariate analysis (MVA) is used in years to come
Publisher: Academic Press
ISBN: 012811066X
Category : Medical
Languages : en
Pages : 465
Book Description
Multivariate Analysis in the Pharmaceutical Industry provides industry practitioners with guidance on multivariate data methods and their applications over the lifecycle of a pharmaceutical product, from process development, to routine manufacturing, focusing on the challenges specific to each step. It includes an overview of regulatory guidance specific to the use of these methods, along with perspectives on the applications of these methods that allow for testing, monitoring and controlling products and processes. The book seeks to put multivariate analysis into a pharmaceutical context for the benefit of pharmaceutical practitioners, potential practitioners, managers and regulators. Users will find a resources that addresses an unmet need on how pharmaceutical industry professionals can extract value from data that is routinely collected on products and processes, especially as these techniques become more widely used, and ultimately, expected by regulators. - Targets pharmaceutical industry practitioners and regulatory staff by addressing industry specific challenges - Includes case studies from different pharmaceutical companies and across product lifecycle of to introduce readers to the breadth of applications - Contains information on the current regulatory framework which will shape how multivariate analysis (MVA) is used in years to come
Applications of Modern Mass Spectrometry: Volume 1
Author: Atta-ur-Rahman
Publisher: Bentham Science Publishers
ISBN: 9811433801
Category : Science
Languages : en
Pages : 227
Book Description
Applications of Modern Mass Spectrometry covers the latest advances in the use of mass spectrometry in scientific research. The series attempts to present readers information on the broad range of mass spectrometry techniques and configurations, data analysis and practical applications. Each volume contains contributions from eminent researchers who present their findings in an easy to read format. The multidisciplinary nature of the works presented in each volume of this book series make it a valuable reference on mass spectrometry to academic researchers and industrial R&D specialists in applied sciences, biochemistry, life sciences and allied fields. The first volume of the series presents 5 reviews: - Applications of mass spectrometry for the determination of the microbial crude protein synthesis in ruminants - Qualitative and quantitative LC-MS analysis in food proteins and peptides - Chemometrics as a powerful and complementary tool for mass spectrometry applications in life sciences - Recent developments of allied techniques of qualitative analysis of heavy metal ions in aqueous solutions with special reference to modern mass spectrometry - New techniques and methods in explosive analysis.
Publisher: Bentham Science Publishers
ISBN: 9811433801
Category : Science
Languages : en
Pages : 227
Book Description
Applications of Modern Mass Spectrometry covers the latest advances in the use of mass spectrometry in scientific research. The series attempts to present readers information on the broad range of mass spectrometry techniques and configurations, data analysis and practical applications. Each volume contains contributions from eminent researchers who present their findings in an easy to read format. The multidisciplinary nature of the works presented in each volume of this book series make it a valuable reference on mass spectrometry to academic researchers and industrial R&D specialists in applied sciences, biochemistry, life sciences and allied fields. The first volume of the series presents 5 reviews: - Applications of mass spectrometry for the determination of the microbial crude protein synthesis in ruminants - Qualitative and quantitative LC-MS analysis in food proteins and peptides - Chemometrics as a powerful and complementary tool for mass spectrometry applications in life sciences - Recent developments of allied techniques of qualitative analysis of heavy metal ions in aqueous solutions with special reference to modern mass spectrometry - New techniques and methods in explosive analysis.
Modern Multivariate Statistical Techniques
Author: Alan J. Izenman
Publisher: Springer Science & Business Media
ISBN: 0387781897
Category : Mathematics
Languages : en
Pages : 757
Book Description
This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.
Publisher: Springer Science & Business Media
ISBN: 0387781897
Category : Mathematics
Languages : en
Pages : 757
Book Description
This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.
Encyclopedia of Research Design
Author: Neil J. Salkind
Publisher: SAGE
ISBN: 1412961270
Category : Philosophy
Languages : en
Pages : 1779
Book Description
"Comprising more than 500 entries, the Encyclopedia of Research Design explains how to make decisions about research design, undertake research projects in an ethical manner, interpret and draw valid inferences from data, and evaluate experiment design strategies and results. Two additional features carry this encyclopedia far above other works in the field: bibliographic entries devoted to significant articles in the history of research design and reviews of contemporary tools, such as software and statistical procedures, used to analyze results. It covers the spectrum of research design strategies, from material presented in introductory classes to topics necessary in graduate research; it addresses cross- and multidisciplinary research needs, with many examples drawn from the social and behavioral sciences, neurosciences, and biomedical and life sciences; it provides summaries of advantages and disadvantages of often-used strategies; and it uses hundreds of sample tables, figures, and equations based on real-life cases."--Publisher's description.
Publisher: SAGE
ISBN: 1412961270
Category : Philosophy
Languages : en
Pages : 1779
Book Description
"Comprising more than 500 entries, the Encyclopedia of Research Design explains how to make decisions about research design, undertake research projects in an ethical manner, interpret and draw valid inferences from data, and evaluate experiment design strategies and results. Two additional features carry this encyclopedia far above other works in the field: bibliographic entries devoted to significant articles in the history of research design and reviews of contemporary tools, such as software and statistical procedures, used to analyze results. It covers the spectrum of research design strategies, from material presented in introductory classes to topics necessary in graduate research; it addresses cross- and multidisciplinary research needs, with many examples drawn from the social and behavioral sciences, neurosciences, and biomedical and life sciences; it provides summaries of advantages and disadvantages of often-used strategies; and it uses hundreds of sample tables, figures, and equations based on real-life cases."--Publisher's description.
Applied Univariate, Bivariate, and Multivariate Statistics Using Python
Author: Daniel J. Denis
Publisher: John Wiley & Sons
ISBN: 1119578183
Category : Mathematics
Languages : en
Pages : 304
Book Description
Applied Univariate, Bivariate, and Multivariate Statistics Using Python A practical, “how-to” reference for anyone performing essential statistical analyses and data management tasks in Python Applied Univariate, Bivariate, and Multivariate Statistics Using Python delivers a comprehensive introduction to a wide range of statistical methods performed using Python in a single, one-stop reference. The book contains user-friendly guidance and instructions on using Python to run a variety of statistical procedures without getting bogged down in unnecessary theory. Throughout, the author emphasizes a set of computational tools used in the discovery of empirical patterns, as well as several popular statistical analyses and data management tasks that can be immediately applied. Most of the datasets used in the book are small enough to be easily entered into Python manually, though they can also be downloaded for free from www.datapsyc.com. Only minimal knowledge of statistics is assumed, making the book perfect for those seeking an easily accessible toolkit for statistical analysis with Python. Applied Univariate, Bivariate, and Multivariate Statistics Using Python represents the fastest way to learn how to analyze data with Python. Readers will also benefit from the inclusion of: A review of essential statistical principles, including types of data, measurement, significance tests, significance levels, and type I and type II errors An introduction to Python, exploring how to communicate with Python A treatment of exploratory data analysis, basic statistics and visual displays, including frequencies and descriptives, q-q plots, box-and-whisker plots, and data management An introduction to topics such as ANOVA, MANOVA and discriminant analysis, regression, principal components analysis, factor analysis, cluster analysis, among others, exploring the nature of what these techniques can vs. cannot do on a methodological level Perfect for undergraduate and graduate students in the social, behavioral, and natural sciences, Applied Univariate, Bivariate, and Multivariate Statistics Using Python will also earn a place in the libraries of researchers and data analysts seeking a quick go-to resource for univariate, bivariate, and multivariate analysis in Python.
Publisher: John Wiley & Sons
ISBN: 1119578183
Category : Mathematics
Languages : en
Pages : 304
Book Description
Applied Univariate, Bivariate, and Multivariate Statistics Using Python A practical, “how-to” reference for anyone performing essential statistical analyses and data management tasks in Python Applied Univariate, Bivariate, and Multivariate Statistics Using Python delivers a comprehensive introduction to a wide range of statistical methods performed using Python in a single, one-stop reference. The book contains user-friendly guidance and instructions on using Python to run a variety of statistical procedures without getting bogged down in unnecessary theory. Throughout, the author emphasizes a set of computational tools used in the discovery of empirical patterns, as well as several popular statistical analyses and data management tasks that can be immediately applied. Most of the datasets used in the book are small enough to be easily entered into Python manually, though they can also be downloaded for free from www.datapsyc.com. Only minimal knowledge of statistics is assumed, making the book perfect for those seeking an easily accessible toolkit for statistical analysis with Python. Applied Univariate, Bivariate, and Multivariate Statistics Using Python represents the fastest way to learn how to analyze data with Python. Readers will also benefit from the inclusion of: A review of essential statistical principles, including types of data, measurement, significance tests, significance levels, and type I and type II errors An introduction to Python, exploring how to communicate with Python A treatment of exploratory data analysis, basic statistics and visual displays, including frequencies and descriptives, q-q plots, box-and-whisker plots, and data management An introduction to topics such as ANOVA, MANOVA and discriminant analysis, regression, principal components analysis, factor analysis, cluster analysis, among others, exploring the nature of what these techniques can vs. cannot do on a methodological level Perfect for undergraduate and graduate students in the social, behavioral, and natural sciences, Applied Univariate, Bivariate, and Multivariate Statistics Using Python will also earn a place in the libraries of researchers and data analysts seeking a quick go-to resource for univariate, bivariate, and multivariate analysis in Python.