Author: Anthony C. Fischer-Cripps
Publisher: Springer Science & Business Media
ISBN: 0387989145
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
Mechanical engineering, an engineering discipline forged and shaped by the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solutions. The Mechanical Engineering Series features graduate texts and research mo- graphs intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that covers a broad range of concentrations important to mechanical engineering graduate education and - search. We are fortunate to have a distinguished roster of consulting editors on the advisory board, each an expert in one of the areas of concentration. The names of the consulting editors are listed on the facing page of this volume. The areas of concentration are applied mechanics, biomechanics, computational - chanics, dynamic systems and control, energetics, mechanics of materials, pr- essing, production systems, thermal science, and tribology. Professor Finnie, the consulting editor for mechanics of materials, and I are pleased to present Introduction to Contact Mechanics by Anthony C. Fischer- Cripps.
Introduction to Contact Mechanics
Author: Anthony C. Fischer-Cripps
Publisher: Springer Science & Business Media
ISBN: 0387989145
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
Mechanical engineering, an engineering discipline forged and shaped by the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solutions. The Mechanical Engineering Series features graduate texts and research mo- graphs intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that covers a broad range of concentrations important to mechanical engineering graduate education and - search. We are fortunate to have a distinguished roster of consulting editors on the advisory board, each an expert in one of the areas of concentration. The names of the consulting editors are listed on the facing page of this volume. The areas of concentration are applied mechanics, biomechanics, computational - chanics, dynamic systems and control, energetics, mechanics of materials, pr- essing, production systems, thermal science, and tribology. Professor Finnie, the consulting editor for mechanics of materials, and I are pleased to present Introduction to Contact Mechanics by Anthony C. Fischer- Cripps.
Publisher: Springer Science & Business Media
ISBN: 0387989145
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
Mechanical engineering, an engineering discipline forged and shaped by the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solutions. The Mechanical Engineering Series features graduate texts and research mo- graphs intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that covers a broad range of concentrations important to mechanical engineering graduate education and - search. We are fortunate to have a distinguished roster of consulting editors on the advisory board, each an expert in one of the areas of concentration. The names of the consulting editors are listed on the facing page of this volume. The areas of concentration are applied mechanics, biomechanics, computational - chanics, dynamic systems and control, energetics, mechanics of materials, pr- essing, production systems, thermal science, and tribology. Professor Finnie, the consulting editor for mechanics of materials, and I are pleased to present Introduction to Contact Mechanics by Anthony C. Fischer- Cripps.
Contact Mechanics II
Author: M. H. Aliabadi
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 520
Book Description
Conference proceedings including papers on mechanical models such as rolling, impact and shock, unilateral contact; numerical models such as finite element method, boundary element method, and the integral equations; engineering applications such as fracture mechanics and composite materials and mathematical models.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 520
Book Description
Conference proceedings including papers on mechanical models such as rolling, impact and shock, unilateral contact; numerical models such as finite element method, boundary element method, and the integral equations; engineering applications such as fracture mechanics and composite materials and mathematical models.
Handbook of Contact Mechanics
Author: Valentin L. Popov
Publisher: Springer
ISBN: 3662587092
Category : Science
Languages : en
Pages : 357
Book Description
This open access book contains a structured collection of the complete solutions of all essential axisymmetric contact problems. Based on a systematic distinction regarding the type of contact, the regime of friction and the contact geometry, a multitude of technically relevant contact problems from mechanical engineering, the automotive industry and medical engineering are discussed. In addition to contact problems between isotropic elastic and viscoelastic media, contact problems between transversal-isotropic elastic materials and functionally graded materials are addressed, too. The optimization of the latter is a focus of current research especially in the fields of actuator technology and biomechanics. The book takes into account adhesive effects which allow access to contact-mechanical questions about micro- and nano-electromechanical systems. Solutions of the contact problems include both the relationships between the macroscopic force, displacement and contact length, as well as the stress and displacement fields at the surface and, if appropriate, within the half-space medium. Solutions are always obtained with the simplest available method - usually with the method of dimensionality reduction (MDR) or approaches which use the solution of the non-adhesive normal contact problem to solve the respective contact problem.
Publisher: Springer
ISBN: 3662587092
Category : Science
Languages : en
Pages : 357
Book Description
This open access book contains a structured collection of the complete solutions of all essential axisymmetric contact problems. Based on a systematic distinction regarding the type of contact, the regime of friction and the contact geometry, a multitude of technically relevant contact problems from mechanical engineering, the automotive industry and medical engineering are discussed. In addition to contact problems between isotropic elastic and viscoelastic media, contact problems between transversal-isotropic elastic materials and functionally graded materials are addressed, too. The optimization of the latter is a focus of current research especially in the fields of actuator technology and biomechanics. The book takes into account adhesive effects which allow access to contact-mechanical questions about micro- and nano-electromechanical systems. Solutions of the contact problems include both the relationships between the macroscopic force, displacement and contact length, as well as the stress and displacement fields at the surface and, if appropriate, within the half-space medium. Solutions are always obtained with the simplest available method - usually with the method of dimensionality reduction (MDR) or approaches which use the solution of the non-adhesive normal contact problem to solve the respective contact problem.
Contact Mechanics
Author: K. L. Johnson
Publisher: Cambridge University Press
ISBN: 9780521347969
Category : Science
Languages : en
Pages : 472
Book Description
This treatise is concerned with the stresses and deformation of solid bodies in contact with each other, along curved surfaces which touch initially at a point or along a line. Examples are a railway wheel and rail, or a pair of gear wheel teeth. Professor Johnson first reviews the development of the theory of contact stresses since the problem was originally addressed by H. Hertz in 1882. Next he discusses the influence of friction and the topographical roughness of surfaces, and this is incorporated into the theory of contact mechanics. An important feature is the treatment of bodies which deform plastically or viscoelastically. In addition to stationary contact, an appreciable section of the book is concerned with bodies which are in sliding or rolling contact, or which collide.
Publisher: Cambridge University Press
ISBN: 9780521347969
Category : Science
Languages : en
Pages : 472
Book Description
This treatise is concerned with the stresses and deformation of solid bodies in contact with each other, along curved surfaces which touch initially at a point or along a line. Examples are a railway wheel and rail, or a pair of gear wheel teeth. Professor Johnson first reviews the development of the theory of contact stresses since the problem was originally addressed by H. Hertz in 1882. Next he discusses the influence of friction and the topographical roughness of surfaces, and this is incorporated into the theory of contact mechanics. An important feature is the treatment of bodies which deform plastically or viscoelastically. In addition to stationary contact, an appreciable section of the book is concerned with bodies which are in sliding or rolling contact, or which collide.
Computational Contact Mechanics
Author: Peter Wriggers
Publisher: Springer Science & Business Media
ISBN: 3211772987
Category : Science
Languages : en
Pages : 252
Book Description
Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems.
Publisher: Springer Science & Business Media
ISBN: 3211772987
Category : Science
Languages : en
Pages : 252
Book Description
Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems.
Contact Mechanics
Author: J.R. Barber
Publisher: Springer
ISBN: 3319709399
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
This book describes the solution of contact problems with an emphasis on idealized (mainly linear) elastic problems that can be treated with elementary analytical methods. General physical and mathematical features of these solutions are highlighted. Topics covered include the contact of rough surfaces and problems involving adhesive (e.g. van der Waals) forces. The author is a well-known researcher in the subject with hands-on experience of the topics covered and a reputation for lucid explanations. The target readership for the book includes researchers who encounter contact problems but whose primary focus is not contact mechanics. Coverage is also suitable for a graduate course in contact mechanics and end-of-chapter problems are included.
Publisher: Springer
ISBN: 3319709399
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
This book describes the solution of contact problems with an emphasis on idealized (mainly linear) elastic problems that can be treated with elementary analytical methods. General physical and mathematical features of these solutions are highlighted. Topics covered include the contact of rough surfaces and problems involving adhesive (e.g. van der Waals) forces. The author is a well-known researcher in the subject with hands-on experience of the topics covered and a reputation for lucid explanations. The target readership for the book includes researchers who encounter contact problems but whose primary focus is not contact mechanics. Coverage is also suitable for a graduate course in contact mechanics and end-of-chapter problems are included.
Numerical Methods in Contact Mechanics
Author: Vladislav A. Yastrebov
Publisher: John Wiley & Sons
ISBN: 1118648056
Category : Mathematics
Languages : en
Pages : 303
Book Description
Computational contact mechanics is a broad topic which brings together algorithmic, geometrical, optimization and numerical aspects for a robust, fast and accurate treatment of contact problems. This book covers all the basic ingredients of contact and computational contact mechanics: from efficient contact detection algorithms and classical optimization methods to new developments in contact kinematics and resolution schemes for both sequential and parallel computer architectures. The book is self-contained and intended for people working on the implementation and improvement of contact algorithms in a finite element software. Using a new tensor algebra, the authors introduce some original notions in contact kinematics and extend the classical formulation of contact elements. Some classical and new resolution methods for contact problems and associated ready-to-implement expressions are provided. Contents: 1. Introduction to Computational Contact. 2. Geometry in Contact Mechanics. 3. Contact Detection. 4. Formulation of Contact Problems. 5. Numerical Procedures. 6. Numerical Examples. About the Authors Vladislav A. Yastrebov is a postdoctoral-fellow in Computational Solid Mechanics at MINES ParisTech in France. His work in computational contact mechanics was recognized by the CSMA award and by the Prix Paul Caseau of the French Academy of Technology and Electricité de France.
Publisher: John Wiley & Sons
ISBN: 1118648056
Category : Mathematics
Languages : en
Pages : 303
Book Description
Computational contact mechanics is a broad topic which brings together algorithmic, geometrical, optimization and numerical aspects for a robust, fast and accurate treatment of contact problems. This book covers all the basic ingredients of contact and computational contact mechanics: from efficient contact detection algorithms and classical optimization methods to new developments in contact kinematics and resolution schemes for both sequential and parallel computer architectures. The book is self-contained and intended for people working on the implementation and improvement of contact algorithms in a finite element software. Using a new tensor algebra, the authors introduce some original notions in contact kinematics and extend the classical formulation of contact elements. Some classical and new resolution methods for contact problems and associated ready-to-implement expressions are provided. Contents: 1. Introduction to Computational Contact. 2. Geometry in Contact Mechanics. 3. Contact Detection. 4. Formulation of Contact Problems. 5. Numerical Procedures. 6. Numerical Examples. About the Authors Vladislav A. Yastrebov is a postdoctoral-fellow in Computational Solid Mechanics at MINES ParisTech in France. His work in computational contact mechanics was recognized by the CSMA award and by the Prix Paul Caseau of the French Academy of Technology and Electricité de France.
Granular Dynamics, Contact Mechanics and Particle System Simulations
Author: Colin Thornton
Publisher: Springer
ISBN: 3319187112
Category : Science
Languages : en
Pages : 202
Book Description
This book is devoted to the Discrete Element Method (DEM) technique, a discontinuum modelling approach that takes into account the fact that granular materials are composed of discrete particles which interact with each other at the microscale level. This numerical simulation technique can be used both for dispersed systems in which the particle-particle interactions are collisional and compact systems of particles with multiple enduring contacts. The book provides an extensive and detailed explanation of the theoretical background of DEM. Contact mechanics theories for elastic, elastic-plastic, adhesive elastic and adhesive elastic-plastic particle-particle interactions are presented. Other contact force models are also discussed, including corrections to some of these models as described in the literature, and important areas of further research are identified. A key issue in DEM simulations is whether or not a code can reliably simulate the simplest of systems, namely the single particle oblique impact with a wall. This is discussed using the output obtained from the contact force models described earlier, which are compared for elastic and inelastic collisions. In addition, further insight is provided for the impact of adhesive particles. The author then moves on to provide the results of selected DEM applications to agglomerate impacts, fluidised beds and quasi-static deformation, demonstrating that the DEM technique can be used (i) to mimic experiments, (ii) explore parameter sweeps, including limiting values, or (iii) identify new, previously unknown, phenomena at the microscale. In the DEM applications the emphasis is on discovering new information that enhances our rational understanding of particle systems, which may be more significant than developing a new continuum model that encompasses all microstructural aspects, which would most likely prove too complicated for practical implementation. The book will be of interest to academic and industrial researchers working in particle technology/process engineering and geomechanics, both experimentalists and theoreticians.
Publisher: Springer
ISBN: 3319187112
Category : Science
Languages : en
Pages : 202
Book Description
This book is devoted to the Discrete Element Method (DEM) technique, a discontinuum modelling approach that takes into account the fact that granular materials are composed of discrete particles which interact with each other at the microscale level. This numerical simulation technique can be used both for dispersed systems in which the particle-particle interactions are collisional and compact systems of particles with multiple enduring contacts. The book provides an extensive and detailed explanation of the theoretical background of DEM. Contact mechanics theories for elastic, elastic-plastic, adhesive elastic and adhesive elastic-plastic particle-particle interactions are presented. Other contact force models are also discussed, including corrections to some of these models as described in the literature, and important areas of further research are identified. A key issue in DEM simulations is whether or not a code can reliably simulate the simplest of systems, namely the single particle oblique impact with a wall. This is discussed using the output obtained from the contact force models described earlier, which are compared for elastic and inelastic collisions. In addition, further insight is provided for the impact of adhesive particles. The author then moves on to provide the results of selected DEM applications to agglomerate impacts, fluidised beds and quasi-static deformation, demonstrating that the DEM technique can be used (i) to mimic experiments, (ii) explore parameter sweeps, including limiting values, or (iii) identify new, previously unknown, phenomena at the microscale. In the DEM applications the emphasis is on discovering new information that enhances our rational understanding of particle systems, which may be more significant than developing a new continuum model that encompasses all microstructural aspects, which would most likely prove too complicated for practical implementation. The book will be of interest to academic and industrial researchers working in particle technology/process engineering and geomechanics, both experimentalists and theoreticians.
Quantum Mechanics II
Author: Rubin H. Landau
Publisher: John Wiley & Sons
ISBN: 3527617442
Category : Science
Languages : en
Pages : 519
Book Description
Here is a readable and intuitive quantum mechanics text that covers scattering theory, relativistic quantum mechanics, and field theory. This expanded and updated Second Edition - with five new chapters - emphasizes the concrete and calculable over the abstract and pure, and helps turn students into researchers without diminishing their sense of wonder at physics and nature. As a one-year graduate-level course, Quantum Mechanics II: A Second Course in Quantum Theory leads from quantum basics to basic field theory, and lays the foundation for research-oriented specialty courses. Used selectively, the material can be tailored to create a one-semester course in advanced topics. In either case, it addresses a broad audience of students in the physical sciences, as well as independent readers - whether advanced undergraduates or practicing scientists.
Publisher: John Wiley & Sons
ISBN: 3527617442
Category : Science
Languages : en
Pages : 519
Book Description
Here is a readable and intuitive quantum mechanics text that covers scattering theory, relativistic quantum mechanics, and field theory. This expanded and updated Second Edition - with five new chapters - emphasizes the concrete and calculable over the abstract and pure, and helps turn students into researchers without diminishing their sense of wonder at physics and nature. As a one-year graduate-level course, Quantum Mechanics II: A Second Course in Quantum Theory leads from quantum basics to basic field theory, and lays the foundation for research-oriented specialty courses. Used selectively, the material can be tailored to create a one-semester course in advanced topics. In either case, it addresses a broad audience of students in the physical sciences, as well as independent readers - whether advanced undergraduates or practicing scientists.
Computational Contact Mechanics
Author: Alexander Konyukhov
Publisher: Springer Science & Business Media
ISBN: 3642315313
Category : Science
Languages : en
Pages : 446
Book Description
This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.
Publisher: Springer Science & Business Media
ISBN: 3642315313
Category : Science
Languages : en
Pages : 446
Book Description
This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.