Author: John C. Baez
Publisher: Princeton University Press
ISBN: 1400862507
Category : Science
Languages : en
Pages : 310
Book Description
The authors present a rigorous treatment of the first principles of the algebraic and analytic core of quantum field theory. Their aim is to correlate modern mathematical theory with the explanation of the observed process of particle production and of particle-wave duality that heuristic quantum field theory provides. Many topics are treated here in book form for the first time, from the origins of complex structures to the quantization of tachyons and domains of dependence for quantized wave equations. This work begins with a comprehensive analysis, in a universal format, of the structure and characterization of free fields, which is illustrated by applications to specific fields. Nonlinear local functions of both free fields (or Wick products) and interacting fields are established mathematically in a way that is consistent with the basic physical constraints and practice. Among other topics discussed are functional integration, Fourier transforms in Hilbert space, and implementability of canonical transformations. The authors address readers interested in fundamental mathematical physics and who have at least the training of an entering graduate student. A series of lexicons connects the mathematical development with the underlying physical motivation or interpretation. The examples and problems illustrate the theory and relate it to the scientific literature. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Introduction to Algebraic and Constructive Quantum Field Theory
Author: John C. Baez
Publisher: Princeton University Press
ISBN: 1400862507
Category : Science
Languages : en
Pages : 310
Book Description
The authors present a rigorous treatment of the first principles of the algebraic and analytic core of quantum field theory. Their aim is to correlate modern mathematical theory with the explanation of the observed process of particle production and of particle-wave duality that heuristic quantum field theory provides. Many topics are treated here in book form for the first time, from the origins of complex structures to the quantization of tachyons and domains of dependence for quantized wave equations. This work begins with a comprehensive analysis, in a universal format, of the structure and characterization of free fields, which is illustrated by applications to specific fields. Nonlinear local functions of both free fields (or Wick products) and interacting fields are established mathematically in a way that is consistent with the basic physical constraints and practice. Among other topics discussed are functional integration, Fourier transforms in Hilbert space, and implementability of canonical transformations. The authors address readers interested in fundamental mathematical physics and who have at least the training of an entering graduate student. A series of lexicons connects the mathematical development with the underlying physical motivation or interpretation. The examples and problems illustrate the theory and relate it to the scientific literature. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400862507
Category : Science
Languages : en
Pages : 310
Book Description
The authors present a rigorous treatment of the first principles of the algebraic and analytic core of quantum field theory. Their aim is to correlate modern mathematical theory with the explanation of the observed process of particle production and of particle-wave duality that heuristic quantum field theory provides. Many topics are treated here in book form for the first time, from the origins of complex structures to the quantization of tachyons and domains of dependence for quantized wave equations. This work begins with a comprehensive analysis, in a universal format, of the structure and characterization of free fields, which is illustrated by applications to specific fields. Nonlinear local functions of both free fields (or Wick products) and interacting fields are established mathematically in a way that is consistent with the basic physical constraints and practice. Among other topics discussed are functional integration, Fourier transforms in Hilbert space, and implementability of canonical transformations. The authors address readers interested in fundamental mathematical physics and who have at least the training of an entering graduate student. A series of lexicons connects the mathematical development with the underlying physical motivation or interpretation. The examples and problems illustrate the theory and relate it to the scientific literature. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics
Author: Erhard Seiler
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 212
Book Description
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 212
Book Description
Constructive Quantum Field Theory
Author: G. Velo
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 350
Book Description
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 350
Book Description
Advances in Algebraic Quantum Field Theory
Author: Romeo Brunetti
Publisher: Springer
ISBN: 3319213539
Category : Science
Languages : en
Pages : 460
Book Description
This text focuses on the algebraic formulation of quantum field theory, from the introductory aspects to the applications to concrete problems of physical interest. The book is divided in thematic chapters covering both introductory and more advanced topics. These include the algebraic, perturbative approach to interacting quantum field theories, algebraic quantum field theory on curved spacetimes (from its structural aspects to the applications in cosmology and to the role of quantum spacetimes), algebraic conformal field theory, the Kitaev's quantum double model from the point of view of local quantum physics and constructive aspects in relation to integrable models and deformation techniques. The book is addressed to master and graduate students both in mathematics and in physics, who are interested in learning the structural aspects and the applications of algebraic quantum field theory.
Publisher: Springer
ISBN: 3319213539
Category : Science
Languages : en
Pages : 460
Book Description
This text focuses on the algebraic formulation of quantum field theory, from the introductory aspects to the applications to concrete problems of physical interest. The book is divided in thematic chapters covering both introductory and more advanced topics. These include the algebraic, perturbative approach to interacting quantum field theories, algebraic quantum field theory on curved spacetimes (from its structural aspects to the applications in cosmology and to the role of quantum spacetimes), algebraic conformal field theory, the Kitaev's quantum double model from the point of view of local quantum physics and constructive aspects in relation to integrable models and deformation techniques. The book is addressed to master and graduate students both in mathematics and in physics, who are interested in learning the structural aspects and the applications of algebraic quantum field theory.
Mathematical Physics 2000
Author: A. S. Fokas
Publisher: World Scientific Publishing Company
ISBN: 9781860942303
Category : Mathematics
Languages : en
Pages : 326
Book Description
Mathematical physics has made enormous strides over the past few decades, with the emergence of many new disciplines and with revolutionary advances in old disciplines. One of the especially interesting features is the link between developments in mathematical physics and in pure mathematics. Many of the exciting advances in mathematics owe their origin to mathematical physics -- superstring theory, for example, has led to remarkable progress in geometry -- while very pure mathematics, such as number theory, has found unexpected applications. The beginning of a new millennium is an appropriate time to survey the present state of the field and look forward to likely advances in the future. In this book, leading experts give personal views on their subjects and on the wider field of mathematical physics. The topics covered range widely over the whole field, from quantum field theory to turbulence, from the classical three-body problem to non-equilibrium statistical mechanics.
Publisher: World Scientific Publishing Company
ISBN: 9781860942303
Category : Mathematics
Languages : en
Pages : 326
Book Description
Mathematical physics has made enormous strides over the past few decades, with the emergence of many new disciplines and with revolutionary advances in old disciplines. One of the especially interesting features is the link between developments in mathematical physics and in pure mathematics. Many of the exciting advances in mathematics owe their origin to mathematical physics -- superstring theory, for example, has led to remarkable progress in geometry -- while very pure mathematics, such as number theory, has found unexpected applications. The beginning of a new millennium is an appropriate time to survey the present state of the field and look forward to likely advances in the future. In this book, leading experts give personal views on their subjects and on the wider field of mathematical physics. The topics covered range widely over the whole field, from quantum field theory to turbulence, from the classical three-body problem to non-equilibrium statistical mechanics.
Quantum Field Theory and Statistical Mechanics
Author: James Glimm
Publisher: Springer Science & Business Media
ISBN: 1461251583
Category : Science
Languages : en
Pages : 406
Book Description
This volume contains a selection of expository articles on quantum field theory and statistical mechanics by James Glimm and Arthur Jaffe. They include a solution of the original interacting quantum field equations and a description of the physics which these equations contain. Quantum fields were proposed in the late 1920s as the natural framework which combines quantum theory with relativ ity. They have survived ever since. The mathematical description for quantum theory starts with a Hilbert space H of state vectors. Quantum fields are linear operators on this space, which satisfy nonlinear wave equations of fundamental physics, including coupled Dirac, Max well and Yang-Mills equations. The field operators are restricted to satisfy a "locality" requirement that they commute (or anti-commute in the case of fer mions) at space-like separated points. This condition is compatible with finite propagation speed, and hence with special relativity. Asymptotically, these fields converge for large time to linear fields describing free particles. Using these ideas a scattering theory had been developed, based on the existence of local quantum fields.
Publisher: Springer Science & Business Media
ISBN: 1461251583
Category : Science
Languages : en
Pages : 406
Book Description
This volume contains a selection of expository articles on quantum field theory and statistical mechanics by James Glimm and Arthur Jaffe. They include a solution of the original interacting quantum field equations and a description of the physics which these equations contain. Quantum fields were proposed in the late 1920s as the natural framework which combines quantum theory with relativ ity. They have survived ever since. The mathematical description for quantum theory starts with a Hilbert space H of state vectors. Quantum fields are linear operators on this space, which satisfy nonlinear wave equations of fundamental physics, including coupled Dirac, Max well and Yang-Mills equations. The field operators are restricted to satisfy a "locality" requirement that they commute (or anti-commute in the case of fer mions) at space-like separated points. This condition is compatible with finite propagation speed, and hence with special relativity. Asymptotically, these fields converge for large time to linear fields describing free particles. Using these ideas a scattering theory had been developed, based on the existence of local quantum fields.
Quantum Mechanics and Quantum Field Theory
Author: Jonathan Dimock
Publisher: Cambridge University Press
ISBN: 1139497480
Category : Science
Languages : en
Pages : 239
Book Description
Explaining the concepts of quantum mechanics and quantum field theory in a precise mathematical language, this textbook is an ideal introduction for graduate students in mathematics, helping to prepare them for further studies in quantum physics. The textbook covers topics that are central to quantum physics: non-relativistic quantum mechanics, quantum statistical mechanics, relativistic quantum mechanics and quantum field theory. There is also background material on analysis, classical mechanics, relativity and probability. Each topic is explored through a statement of basic principles followed by simple examples. Around 100 problems throughout the textbook help readers develop their understanding.
Publisher: Cambridge University Press
ISBN: 1139497480
Category : Science
Languages : en
Pages : 239
Book Description
Explaining the concepts of quantum mechanics and quantum field theory in a precise mathematical language, this textbook is an ideal introduction for graduate students in mathematics, helping to prepare them for further studies in quantum physics. The textbook covers topics that are central to quantum physics: non-relativistic quantum mechanics, quantum statistical mechanics, relativistic quantum mechanics and quantum field theory. There is also background material on analysis, classical mechanics, relativity and probability. Each topic is explored through a statement of basic principles followed by simple examples. Around 100 problems throughout the textbook help readers develop their understanding.
P(0)2 Euclidean (Quantum) Field Theory
Author: Barry Simon
Publisher: Princeton University Press
ISBN: 1400868750
Category : Science
Languages : en
Pages : 414
Book Description
Barry Simon's book both summarizes and introduces the remarkable progress in constructive quantum field theory that can be attributed directly to the exploitation of Euclidean methods. During the past two years deep relations on both the physical level and on the level of the mathematical structure have been either uncovered or made rigorous. Connections between quantum fields and the statistical mechanics of ferromagnets have been established, for example, that now allow one to prove numerous inequalities in quantum field theory. In the first part of the book, the author presents the Euclidean methods on an axiomatic level and on the constructive level where the traditional results of the P(Ø)2 theory are translated into the new language. In the second part Professor Simon gives one of the approaches for constructing models of non-trivial, two-dimensional Wightman fields—specifically, the method of correlation inequalities. He discusses other approaches briefly. Drawn primarily from the author's lectures at the Eidenössiehe Technische Hochschule, Zurich, in 1973, the volume will appeal to physicists and mathematicians alike; it is especially suitable for those with limited familiarity with the literature of this very active field. Originally published in 1974. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400868750
Category : Science
Languages : en
Pages : 414
Book Description
Barry Simon's book both summarizes and introduces the remarkable progress in constructive quantum field theory that can be attributed directly to the exploitation of Euclidean methods. During the past two years deep relations on both the physical level and on the level of the mathematical structure have been either uncovered or made rigorous. Connections between quantum fields and the statistical mechanics of ferromagnets have been established, for example, that now allow one to prove numerous inequalities in quantum field theory. In the first part of the book, the author presents the Euclidean methods on an axiomatic level and on the constructive level where the traditional results of the P(Ø)2 theory are translated into the new language. In the second part Professor Simon gives one of the approaches for constructing models of non-trivial, two-dimensional Wightman fields—specifically, the method of correlation inequalities. He discusses other approaches briefly. Drawn primarily from the author's lectures at the Eidenössiehe Technische Hochschule, Zurich, in 1973, the volume will appeal to physicists and mathematicians alike; it is especially suitable for those with limited familiarity with the literature of this very active field. Originally published in 1974. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Modern Course in Quantum Field Theory
Author: Badis Ydri
Publisher: Programme: Iop Expanding Physi
ISBN: 9780750314817
Category : Science
Languages : en
Pages : 350
Book Description
A Modern Course in Quantum Field Theory provides a self-contained pedagogical and constructive presentation of quantum field theory. Written for advanced students, the work provides complete material for a two or three semester course and includes numerous problem exercises, some with detailed solutions.
Publisher: Programme: Iop Expanding Physi
ISBN: 9780750314817
Category : Science
Languages : en
Pages : 350
Book Description
A Modern Course in Quantum Field Theory provides a self-contained pedagogical and constructive presentation of quantum field theory. Written for advanced students, the work provides complete material for a two or three semester course and includes numerous problem exercises, some with detailed solutions.
Form Factors In Completely Integrable Models Of Quantum Field Theory
Author: F A Smirnov
Publisher: World Scientific
ISBN: 9814506907
Category : Science
Languages : en
Pages : 224
Book Description
The monograph summarizes recent achievements in the calculation of matrix elements of local operators (form factors) for completely integrable models. Particularly, it deals with sine-Gordon, chiral Gross-Neven and O(3) nonlinear s models. General requirements on form factors are formulated and explicit formulas for form factors of most fundamental local operators are presented for the above mentioned models.
Publisher: World Scientific
ISBN: 9814506907
Category : Science
Languages : en
Pages : 224
Book Description
The monograph summarizes recent achievements in the calculation of matrix elements of local operators (form factors) for completely integrable models. Particularly, it deals with sine-Gordon, chiral Gross-Neven and O(3) nonlinear s models. General requirements on form factors are formulated and explicit formulas for form factors of most fundamental local operators are presented for the above mentioned models.