Constrained Optimization and Lagrange Multiplier Methods

Constrained Optimization and Lagrange Multiplier Methods PDF Author: Dimitri P. Bertsekas
Publisher: Academic Press
ISBN: 148326047X
Category : Mathematics
Languages : en
Pages : 412

Get Book Here

Book Description
Computer Science and Applied Mathematics: Constrained Optimization and Lagrange Multiplier Methods focuses on the advancements in the applications of the Lagrange multiplier methods for constrained minimization. The publication first offers information on the method of multipliers for equality constrained problems and the method of multipliers for inequality constrained and nondifferentiable optimization problems. Discussions focus on approximation procedures for nondifferentiable and ill-conditioned optimization problems; asymptotically exact minimization in the methods of multipliers; duality framework for the method of multipliers; and the quadratic penalty function method. The text then examines exact penalty methods, including nondifferentiable exact penalty functions; linearization algorithms based on nondifferentiable exact penalty functions; differentiable exact penalty functions; and local and global convergence of Lagrangian methods. The book ponders on the nonquadratic penalty functions of convex programming. Topics include large scale separable integer programming problems and the exponential method of multipliers; classes of penalty functions and corresponding methods of multipliers; and convergence analysis of multiplier methods. The text is a valuable reference for mathematicians and researchers interested in the Lagrange multiplier methods.

Constrained Optimization and Lagrange Multiplier Methods

Constrained Optimization and Lagrange Multiplier Methods PDF Author: Dimitri P. Bertsekas
Publisher: Academic Press
ISBN: 148326047X
Category : Mathematics
Languages : en
Pages : 412

Get Book Here

Book Description
Computer Science and Applied Mathematics: Constrained Optimization and Lagrange Multiplier Methods focuses on the advancements in the applications of the Lagrange multiplier methods for constrained minimization. The publication first offers information on the method of multipliers for equality constrained problems and the method of multipliers for inequality constrained and nondifferentiable optimization problems. Discussions focus on approximation procedures for nondifferentiable and ill-conditioned optimization problems; asymptotically exact minimization in the methods of multipliers; duality framework for the method of multipliers; and the quadratic penalty function method. The text then examines exact penalty methods, including nondifferentiable exact penalty functions; linearization algorithms based on nondifferentiable exact penalty functions; differentiable exact penalty functions; and local and global convergence of Lagrangian methods. The book ponders on the nonquadratic penalty functions of convex programming. Topics include large scale separable integer programming problems and the exponential method of multipliers; classes of penalty functions and corresponding methods of multipliers; and convergence analysis of multiplier methods. The text is a valuable reference for mathematicians and researchers interested in the Lagrange multiplier methods.

Practical Augmented Lagrangian Methods for Constrained Optimization

Practical Augmented Lagrangian Methods for Constrained Optimization PDF Author: Ernesto G. Birgin
Publisher: SIAM
ISBN: 161197335X
Category : Mathematics
Languages : en
Pages : 222

Get Book Here

Book Description
This book focuses on Augmented Lagrangian techniques for solving practical constrained optimization problems. The authors rigorously delineate mathematical convergence theory based on sequential optimality conditions and novel constraint qualifications. They also orient the book to practitioners by giving priority to results that provide insight on the practical behavior of algorithms and by providing geometrical and algorithmic interpretations of every mathematical result, and they fully describe a freely available computational package for constrained optimization and illustrate its usefulness with applications.

Lagrange Multiplier Approach to Variational Problems and Applications

Lagrange Multiplier Approach to Variational Problems and Applications PDF Author: Kazufumi Ito
Publisher: SIAM
ISBN: 0898716497
Category : Mathematics
Languages : en
Pages : 354

Get Book Here

Book Description
Analyses Lagrange multiplier theory and demonstrates its impact on the development of numerical algorithms for variational problems in function spaces.

Geometric Constraint Solving and Applications

Geometric Constraint Solving and Applications PDF Author: Beat Brüderlin
Publisher: Springer Science & Business Media
ISBN: 3642588980
Category : Computers
Languages : en
Pages : 306

Get Book Here

Book Description
Geometric constraint programming increases flexibility in CAD design specifications and leads to new conceptual design paradigms. This volume features a collection of work by leading researchers developing the various aspects of constraint-based product modeling. In an introductory chapter the role of constraints in CAD systems of the future and their implications for the STEP data exchange format are discussed. The main part of the book deals with the application of constraints to conceptual and collaborative design, as well as state-of-the-art mathematical and algorithmic methods for constraint solving.

Practical Optimization

Practical Optimization PDF Author: Andreas Antoniou
Publisher: Springer Science & Business Media
ISBN: 0387711066
Category : Computers
Languages : en
Pages : 675

Get Book Here

Book Description
Practical Optimization: Algorithms and Engineering Applications is a hands-on treatment of the subject of optimization. A comprehensive set of problems and exercises makes the book suitable for use in one or two semesters of a first-year graduate course or an advanced undergraduate course. Each half of the book contains a full semester’s worth of complementary yet stand-alone material. The practical orientation of the topics chosen and a wealth of useful examples also make the book suitable for practitioners in the field.

Linear Algebra and Optimization for Machine Learning

Linear Algebra and Optimization for Machine Learning PDF Author: Charu C. Aggarwal
Publisher: Springer Nature
ISBN: 3030403440
Category : Computers
Languages : en
Pages : 507

Get Book Here

Book Description
This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.

Modern Robotics

Modern Robotics PDF Author: Kevin M. Lynch
Publisher: Cambridge University Press
ISBN: 1107156300
Category : Computers
Languages : en
Pages : 545

Get Book Here

Book Description
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.

Constrained Markov Decision Processes

Constrained Markov Decision Processes PDF Author: Eitan Altman
Publisher: Routledge
ISBN: 1351458248
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description
This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other.

Real-time PDE-constrained Optimization

Real-time PDE-constrained Optimization PDF Author: Lorenz T. Biegler
Publisher: SIAM
ISBN: 9780898718935
Category : Differential equations, Partial
Languages : en
Pages : 335

Get Book Here

Book Description
Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.

Convex Optimization

Convex Optimization PDF Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744

Get Book Here

Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.