Author: Norbert A'Campo
Publisher: Springer Nature
ISBN: 3030890325
Category : Mathematics
Languages : en
Pages : 282
Book Description
This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincaré Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes’ Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss–Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow’s Theorem on compact holomorphic submanifolds in complex projective spaces. Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.
Topological, Differential and Conformal Geometry of Surfaces
Author: Norbert A'Campo
Publisher: Springer Nature
ISBN: 3030890325
Category : Mathematics
Languages : en
Pages : 282
Book Description
This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincaré Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes’ Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss–Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow’s Theorem on compact holomorphic submanifolds in complex projective spaces. Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.
Publisher: Springer Nature
ISBN: 3030890325
Category : Mathematics
Languages : en
Pages : 282
Book Description
This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincaré Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes’ Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss–Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow’s Theorem on compact holomorphic submanifolds in complex projective spaces. Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.
Conformal Differential Geometry and Its Generalizations
Author: Maks A. Akivis
Publisher: John Wiley & Sons
ISBN: 1118030885
Category : Mathematics
Languages : en
Pages : 404
Book Description
Comprehensive coverage of the foundations, applications, recent developments, and future of conformal differential geometry Conformal Differential Geometry and Its Generalizations is the first and only text that systematically presents the foundations and manifestations of conformal differential geometry. It offers the first unified presentation of the subject, which was established more than a century ago. The text is divided into seven chapters, each containing figures, formulas, and historical and bibliographical notes, while numerous examples elucidate the necessary theory. Clear, focused, and expertly synthesized, Conformal Differential Geometry and Its Generalizations * Develops the theory of hypersurfaces and submanifolds of any dimension of conformal and pseudoconformal spaces. * Investigates conformal and pseudoconformal structures on a manifold of arbitrary dimension, derives their structure equations, and explores their tensor of conformal curvature. * Analyzes the real theory of four-dimensional conformal structures of all possible signatures. * Considers the analytic and differential geometry of Grassmann and almost Grassmann structures. * Draws connections between almost Grassmann structures and web theory. Conformal differential geometry, a part of classical differential geometry, was founded at the turn of the century and gave rise to the study of conformal and almost Grassmann structures in later years. Until now, no book has offered a systematic presentation of the multidimensional conformal differential geometry and the conformal and almost Grassmann structures. After years of intense research at their respective universities and at the Soviet School of Differential Geometry, Maks A. Akivis and Vladislav V. Goldberg have written this well-conceived, expertly executed volume to fill a void in the literature. Dr. Akivis and Dr. Goldberg supply a deep foundation, applications, numerous examples, and recent developments in the field. Many of the findings that fill these pages are published here for the first time, and previously published results are reexamined in a unified context. The geometry and theory of conformal and pseudoconformal spaces of arbitrary dimension, as well as the theory of Grassmann and almost Grassmann structures, are discussed and analyzed in detail. The topics covered not only advance the subject itself, but pose important questions for future investigations. This exhaustive, groundbreaking text combines the classical results and recent developments and findings. This volume is intended for graduate students and researchers of differential geometry. It can be especially useful to those students and researchers who are interested in conformal and Grassmann differential geometry and their applications to theoretical physics.
Publisher: John Wiley & Sons
ISBN: 1118030885
Category : Mathematics
Languages : en
Pages : 404
Book Description
Comprehensive coverage of the foundations, applications, recent developments, and future of conformal differential geometry Conformal Differential Geometry and Its Generalizations is the first and only text that systematically presents the foundations and manifestations of conformal differential geometry. It offers the first unified presentation of the subject, which was established more than a century ago. The text is divided into seven chapters, each containing figures, formulas, and historical and bibliographical notes, while numerous examples elucidate the necessary theory. Clear, focused, and expertly synthesized, Conformal Differential Geometry and Its Generalizations * Develops the theory of hypersurfaces and submanifolds of any dimension of conformal and pseudoconformal spaces. * Investigates conformal and pseudoconformal structures on a manifold of arbitrary dimension, derives their structure equations, and explores their tensor of conformal curvature. * Analyzes the real theory of four-dimensional conformal structures of all possible signatures. * Considers the analytic and differential geometry of Grassmann and almost Grassmann structures. * Draws connections between almost Grassmann structures and web theory. Conformal differential geometry, a part of classical differential geometry, was founded at the turn of the century and gave rise to the study of conformal and almost Grassmann structures in later years. Until now, no book has offered a systematic presentation of the multidimensional conformal differential geometry and the conformal and almost Grassmann structures. After years of intense research at their respective universities and at the Soviet School of Differential Geometry, Maks A. Akivis and Vladislav V. Goldberg have written this well-conceived, expertly executed volume to fill a void in the literature. Dr. Akivis and Dr. Goldberg supply a deep foundation, applications, numerous examples, and recent developments in the field. Many of the findings that fill these pages are published here for the first time, and previously published results are reexamined in a unified context. The geometry and theory of conformal and pseudoconformal spaces of arbitrary dimension, as well as the theory of Grassmann and almost Grassmann structures, are discussed and analyzed in detail. The topics covered not only advance the subject itself, but pose important questions for future investigations. This exhaustive, groundbreaking text combines the classical results and recent developments and findings. This volume is intended for graduate students and researchers of differential geometry. It can be especially useful to those students and researchers who are interested in conformal and Grassmann differential geometry and their applications to theoretical physics.
Conformal Symmetry Breaking Operators for Differential Forms on Spheres
Author: Toshiyuki Kobayashi
Publisher: Springer
ISBN: 9811026572
Category : Mathematics
Languages : en
Pages : 191
Book Description
This work is the first systematic study of all possible conformally covariant differential operators transforming differential forms on a Riemannian manifold X into those on a submanifold Y with focus on the model space (X, Y) = (Sn, Sn-1). The authors give a complete classification of all such conformally covariant differential operators, and find their explicit formulæ in the flat coordinates in terms of basic operators in differential geometry and classical hypergeometric polynomials. Resulting families of operators are natural generalizations of the Rankin–Cohen brackets for modular forms and Juhl's operators from conformal holography. The matrix-valued factorization identities among all possible combinations of conformally covariant differential operators are also established. The main machinery of the proof relies on the "F-method" recently introduced and developed by the authors. It is a general method to construct intertwining operators between C∞-induced representations or to find singular vectors of Verma modules in the context of branching rules, as solutions to differential equations on the Fourier transform side. The book gives a new extension of the F-method to the matrix-valued case in the general setting, which could be applied to other problems as well. This book offers a self-contained introduction to the analysis of symmetry breaking operators for infinite-dimensional representations of reductive Lie groups. This feature will be helpful for active scientists and accessible to graduate students and young researchers in differential geometry, representation theory, and theoretical physics.
Publisher: Springer
ISBN: 9811026572
Category : Mathematics
Languages : en
Pages : 191
Book Description
This work is the first systematic study of all possible conformally covariant differential operators transforming differential forms on a Riemannian manifold X into those on a submanifold Y with focus on the model space (X, Y) = (Sn, Sn-1). The authors give a complete classification of all such conformally covariant differential operators, and find their explicit formulæ in the flat coordinates in terms of basic operators in differential geometry and classical hypergeometric polynomials. Resulting families of operators are natural generalizations of the Rankin–Cohen brackets for modular forms and Juhl's operators from conformal holography. The matrix-valued factorization identities among all possible combinations of conformally covariant differential operators are also established. The main machinery of the proof relies on the "F-method" recently introduced and developed by the authors. It is a general method to construct intertwining operators between C∞-induced representations or to find singular vectors of Verma modules in the context of branching rules, as solutions to differential equations on the Fourier transform side. The book gives a new extension of the F-method to the matrix-valued case in the general setting, which could be applied to other problems as well. This book offers a self-contained introduction to the analysis of symmetry breaking operators for infinite-dimensional representations of reductive Lie groups. This feature will be helpful for active scientists and accessible to graduate students and young researchers in differential geometry, representation theory, and theoretical physics.
Computational Conformal Geometry
Author: Xianfeng David Gu
Publisher:
ISBN:
Category : CD-ROMs
Languages : en
Pages : 324
Book Description
Publisher:
ISBN:
Category : CD-ROMs
Languages : en
Pages : 324
Book Description
Conformal Geometry of Surfaces in S4 and Quaternions
Author: Francis E. Burstall
Publisher: Springer Science & Business Media
ISBN: 9783540430087
Category : Mathematics
Languages : en
Pages : 104
Book Description
The conformal geometry of surfaces recently developed by the authors leads to a unified understanding of algebraic curve theory and the geometry of surfaces on the basis of a quaternionic-valued function theory. The book offers an elementary introduction to the subject but takes the reader to rather advanced topics. Willmore surfaces in the foursphere, their Bcklund and Darboux transforms are covered, and a new proof of the classification of Willmore spheres is given.
Publisher: Springer Science & Business Media
ISBN: 9783540430087
Category : Mathematics
Languages : en
Pages : 104
Book Description
The conformal geometry of surfaces recently developed by the authors leads to a unified understanding of algebraic curve theory and the geometry of surfaces on the basis of a quaternionic-valued function theory. The book offers an elementary introduction to the subject but takes the reader to rather advanced topics. Willmore surfaces in the foursphere, their Bcklund and Darboux transforms are covered, and a new proof of the classification of Willmore spheres is given.
Differential Geometry of Varieties with Degenerate Gauss Maps
Author: Maks A. Akivis
Publisher: Springer Science & Business Media
ISBN: 0387215115
Category : Mathematics
Languages : en
Pages : 272
Book Description
This book surveys the differential geometry of varieties with degenerate Gauss maps, using moving frames and exterior differential forms as well as tensor methods. The authors illustrate the structure of varieties with degenerate Gauss maps, determine the singular points and singular varieties, find focal images and construct a classification of the varieties with degenerate Gauss maps.
Publisher: Springer Science & Business Media
ISBN: 0387215115
Category : Mathematics
Languages : en
Pages : 272
Book Description
This book surveys the differential geometry of varieties with degenerate Gauss maps, using moving frames and exterior differential forms as well as tensor methods. The authors illustrate the structure of varieties with degenerate Gauss maps, determine the singular points and singular varieties, find focal images and construct a classification of the varieties with degenerate Gauss maps.
Transformation Groups in Differential Geometry
Author: Shoshichi Kobayashi
Publisher: Springer Science & Business Media
ISBN: 3642619819
Category : Mathematics
Languages : en
Pages : 192
Book Description
Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965.
Publisher: Springer Science & Business Media
ISBN: 3642619819
Category : Mathematics
Languages : en
Pages : 192
Book Description
Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965.
Locally Conformal Kähler Geometry
Author: Sorin Dragomir
Publisher: Springer Science & Business Media
ISBN: 1461220262
Category : Mathematics
Languages : en
Pages : 332
Book Description
. E C, 0 1'1 1, and n E Z, n ~ 2. Let~.. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf.
Publisher: Springer Science & Business Media
ISBN: 1461220262
Category : Mathematics
Languages : en
Pages : 332
Book Description
. E C, 0 1'1 1, and n E Z, n ~ 2. Let~.. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf.
Differential Geometry
Author: Erwin Kreyszig
Publisher: Courier Corporation
ISBN: 0486318621
Category : Mathematics
Languages : en
Pages : 384
Book Description
An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.
Publisher: Courier Corporation
ISBN: 0486318621
Category : Mathematics
Languages : en
Pages : 384
Book Description
An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.
Cartan for Beginners
Author: Thomas Andrew Ivey
Publisher: American Mathematical Soc.
ISBN: 0821833758
Category : Mathematics
Languages : en
Pages : 394
Book Description
This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.
Publisher: American Mathematical Soc.
ISBN: 0821833758
Category : Mathematics
Languages : en
Pages : 394
Book Description
This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.