Conference on Modern Analysis and Probability

Conference on Modern Analysis and Probability PDF Author: Richard Beals
Publisher: American Mathematical Soc.
ISBN: 082185030X
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
An NSF-supported conference in honor of Professor Shizuo Kakutani was held on June 8-11, 1982, at Yale University, on the occasion of Kakutani's retirement. The three major areas of mathematics on which the conference focused were functional analysis, probability theory, and ergodic theory.

Conference on Modern Analysis and Probability

Conference on Modern Analysis and Probability PDF Author: Richard Beals
Publisher: American Mathematical Soc.
ISBN: 082185030X
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
An NSF-supported conference in honor of Professor Shizuo Kakutani was held on June 8-11, 1982, at Yale University, on the occasion of Kakutani's retirement. The three major areas of mathematics on which the conference focused were functional analysis, probability theory, and ergodic theory.

Operator Theory and Harmonic Analysis

Operator Theory and Harmonic Analysis PDF Author: Alexey N. Karapetyants
Publisher: Springer Nature
ISBN: 3030768295
Category : Mathematics
Languages : en
Pages : 413

Get Book Here

Book Description
This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the second in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University, Rostov-on-Don, Russia. This volume focuses on mathematical methods and applications of probability and statistics in the context of general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multi-parameter objects required when considering operators and objects with variable parameters.

Logic and Computation

Logic and Computation PDF Author: Wilfried Sieg
Publisher: American Mathematical Soc.
ISBN: 0821851101
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
This volume contains the proceedings of the Workshop on Logic and Computation, held in July 1987 at Carnegie-Mellon University. The focus of the workshop was the refined interaction between mathematics and computation theory, one of the most fascinating and potentially fruitful developments in logic. The importance of this interaction lies not only in the emergence of the computer as a powerful tool in mathematics research, but also in the various attempts to carry out significant parts of mathematics in computationally informative ways. The proceedings pursue three complementary aims: to develop parts of mathematics under minimal set-theoretic assumptions; to provide formal frameworks suitable for computer implementation; and to extract, from formal proofs, mathematical and computational information. Aimed at logicians, mathematicians, and computer scientists, this volume is rich in results and replete with mathematical, logical, and computational problems.

Spinor Construction of Vertex Operator Algebras, Triality, and $E^{(1)}_8$

Spinor Construction of Vertex Operator Algebras, Triality, and $E^{(1)}_8$ PDF Author: Alex J. Feingold
Publisher: American Mathematical Soc.
ISBN: 0821851284
Category : Mathematics
Languages : en
Pages : 158

Get Book Here

Book Description
The theory of vertex operator algebras is a remarkably rich new mathematical field which captures the algebraic content of conformal field theory in physics. Ideas leading up to this theory appeared in physics as part of statistical mechanics and string theory. In mathematics, the axiomatic definitions crystallized in the work of Borcherds and in Vertex Operator Algebras and the Monster, by Frenkel, Lepowsky, and Meurman. The structure of monodromies of intertwining operators for modules of vertex operator algebras yield braid group representations and leads to natural generalizations of vertex operator algebras, such as superalgebras and para-algebras. Many examples of vertex operator algebras and their generalizations are related to constructions in classical representation theory and shed new light on the classical theory. This book accomplishes several goals. The authors provide an explicit spinor construction, using only Clifford algebras, of a vertex operator superalgebra structure on the direct sum of the basic and vector modules for the affine Kac-Moody algebra Dn(1). They also review and extend Chevalley's spinor construction of the 24-dimensional commutative nonassociative algebraic structure and triality on the direct sum of the three 8-dimensional D4-modules. Vertex operator para-algebras, introduced and developed independently in this book and by Dong and Lepowsky, are related to one-dimensional representations of the braid group. The authors also provide a unified approach to the Chevalley, Greiss, and E8 algebras and explain some of their similarities. A Third goal is to provide a purely spinor construction of the exceptional affine Lie algebra E8(1), a natural continuation of previous work on spinor and oscillator constructions of the classical affine Lie algebras. These constructions should easily extend to include the rest of the exceptional affine Lie algebras. The final objective is to develop an inductive technique of construction which could be applied to the Monster vertex operator algebra. Directed at mathematicians and physicists, this book should be accessible to graduate students with some background in finite-dimensional Lie algebras and their representations. Although some experience with affine Kac-Moody algebras would be useful, a summary of the relevant parts of that theory is included. This book shows how the concepts and techniques of Lie theory can be generalized to yield the algebraic structures associated with conformal field theory. The careful reader will also gain a detailed knowledge of how the spinor construction of classical triality lifts to the affine algebras and plays an important role in the spinor construction of vertex operator algebras, modules, and intertwining operators with nontrivial monodromies.

Infinite Algebraic Extensions of Finite Fields

Infinite Algebraic Extensions of Finite Fields PDF Author: Joel V. Brawley
Publisher: American Mathematical Soc.
ISBN: 0821851012
Category : Mathematics
Languages : en
Pages : 126

Get Book Here

Book Description
Over the last several decades there has been a renewed interest in finite field theory, partly as a result of important applications in a number of diverse areas such as electronic communications, coding theory, combinatorics, designs, finite geometries, cryptography, and other portions of discrete mathematics. In addition, a number of recent books have been devoted to the subject. Despite the resurgence in interest, it is not widely known that many results concerning finite fields have natural generalizations to abritrary algebraic extensions of finite fields. The purpose of this book is to describe these generalizations. After an introductory chapter surveying pertinent results about finite fields, the book describes the lattice structure of fields between the finite field $GF(q)$ and its algebraic closure $\Gamma (q)$. The authors introduce a notion, due to Steinitz, of an extended positive integer $N$ which includes each ordinary positive integer $n$ as a special case. With the aid of these Steinitz numbers, the algebraic extensions of $GF(q)$ are represented by symbols of the form $GF(q^N)$. When $N$ is an ordinary integer $n$, this notation agrees with the usual notation $GF(q^n)$ for a dimension $n$ extension of $GF(q)$. The authors then show that many of the finite field results concerning $GF(q^n)$ are also true for $GF(q^N)$. One chapter is devoted to giving explicit algorithms for computing in several of the infinite fields $GF(q^N)$ using the notion of an explicit basis for $GF(q^N)$ over $GF(q)$. Another chapter considers polynomials and polynomial-like functions on $GF(q^N)$ and contains a description of several classes of permutation polynomials, including the $q$-polynomials and the Dickson polynomials. Also included is a brief chapter describing two of many potential applications. Aimed at the level of a beginning graduate student or advanced undergraduate, this book could serve well as a supplementary text for a course in finite field theory.

Invariant Theory

Invariant Theory PDF Author: Robert M. Fossum
Publisher: American Mathematical Soc.
ISBN: 0821850946
Category : Mathematics
Languages : en
Pages : 610

Get Book Here

Book Description
This volume contains the proceedings of the AMS Special Session on Invariant Theory, held in Denton, Texas in the fall of 1986; also included are several invited papers in this area. The purpose of the conference was to exchange ideas on recent developments in algebraic group actions on algebraic varieties. The papers fall into three main categories: actions of linear algebraic groups; flag manifolds and invariant theory; and representation theory and invariant theory. This book is likely to find a wide audience, for invariant theory is connected to a range of mathematical fields, such as algebraic groups, algebraic geometry, commutative algebra, and representation theory.

Recent Developments in Geometry

Recent Developments in Geometry PDF Author: Robert Everist Greene
Publisher: American Mathematical Soc.
ISBN: 0821851071
Category : Mathematics
Languages : en
Pages : 354

Get Book Here

Book Description
This volume is the outgrowth of a Special Session on Geometry, held at the November 1987 meeting of the AMS at the University of California at Los Angeles. The unusually well-attended session attracted more than sixty participants and featured over forty addresses by some of the day's outstanding geometers. By common consent, it was decided that the papers to be collected in the present volume should be surveys of relatively broad areas of geometry, rather than detailed presentations of new research results. A comprehensive survey of the field is beyond the scope of a volume such as this. Nonetheless, the editors have sought to provide all geometers, whatever their specialties, with some insight into recent developments in a variety of topics in this active area of research.

Representation Theory, Group Rings, and Coding Theory

Representation Theory, Group Rings, and Coding Theory PDF Author: M. Isaacs
Publisher: American Mathematical Soc.
ISBN: 0821850989
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
Dedicated to the memory of the Soviet mathematician S D Berman (1922-1987), this work covers topics including Berman's achievements in coding theory, including his pioneering work on abelian codes and his results on the theory of threshold functions.

Coloring Theories

Coloring Theories PDF Author: Steve Fisk
Publisher: American Mathematical Soc.
ISBN: 0821851098
Category : Mathematics
Languages : en
Pages : 182

Get Book Here

Book Description
Presents a study of global properties of various kinds of colorings and maps of simplicial complexes. This book studies colorings determined by groups, colorings based on regular polyhedra, and continuous colorings in finitely and infinitely many colors. It shows how colorings relate to various aspects of group theory, geometry, and graph theory.

Accessible Categories: The Foundations of Categorical Model Theory

Accessible Categories: The Foundations of Categorical Model Theory PDF Author: Mihály Makkai
Publisher: American Mathematical Soc.
ISBN: 082185111X
Category : Mathematics
Languages : en
Pages : 186

Get Book Here

Book Description
Intended for category theorists and logicians familiar with basic category theory, this book focuses on categorical model theory, which is concerned with the categories of models of infinitary first order theories, called accessible categories. The starting point is a characterization of accessible categories in terms of concepts familiar from Gabriel-Ulmer's theory of locally presentable categories. Most of the work centers on various constructions (such as weighted bilimits and lax colimits), which, when performed on accessible categories, yield new accessible categories. These constructions are necessarily 2-categorical in nature; the authors cover some aspects of 2-category theory, in addition to some basic model theory, and some set theory. One of the main tools used in this study is the theory of mixed sketches, which the authors specialize to give concrete results about model theory. Many examples illustrate the extent of applicability of these concepts. In particular, some applications to topos theory are given. Perhaps the book's most significant contribution is the way it sets model theory in categorical terms, opening the door for further work along these lines. Requiring a basic background in category theory, this book will provide readers with an understanding of model theory in categorical terms, familiarity with 2-categorical methods, and a useful tool for studying toposes and other categories.