Concise Guide to Numerical Algorithmics

Concise Guide to Numerical Algorithmics PDF Author: John Lawrence Nazareth
Publisher: Springer Nature
ISBN: 3031217624
Category : Computers
Languages : en
Pages : 79

Get Book Here

Book Description
Numerical Algorithmic Science and Engineering (NAS&E), or more compactly, Numerical Algorithmics, is the theoretical and empirical study and the practical implementation and application of algorithms for solving finite-dimensional problems of a numeric nature. The variables of such problems are either discrete-valued, or continuous over the reals, or, and as is often the case, a combination of the two, and they may or may not have an underlying network/graph structure. This re-emerging discipline of numerical algorithmics within computer science is the counterpart of the now well-established discipline of numerical analysis within mathematics, where the latter’s emphasis is on infinite-dimensional, continuous numerical problems and their finite-dimensional, continuous approximates. A discussion of the underlying rationale for numerical algorithmics, its foundational models of computation, its organizational details, and its role, in conjunction with numerical analysis, in support of the modern modus operandi of scientific computing, or computational science & engineering, is the primary focus of this short monograph. It comprises six chapters, each with its own bibliography. Chapters 2, 3 and 6 present the book’s primary content. Chapters 1, 4, and 5 are briefer, and they provide contextual material for the three primary chapters and smooth the transition between them. Mathematical formalism has been kept to a minimum, and, whenever possible, visual and verbal forms of presentation are employed and the discussion enlivened through the use of motivating quotations and illustrative examples. The reader is expected to have a working knowledge of the basics of computer science, an exposure to basic linear algebra and calculus (and perhaps some real analysis), and an understanding of elementary mathematical concepts such as convexity of sets and functions, networks and graphs, and so on. Although this book is not suitable for use as the principal textbook for a course on numerical algorithmics (NAS&E), it will be of value as a supplementary reference for a variety of courses. It can also serve as the primary text for a research seminar. And it can be recommended for self-study of the foundations and organization of NAS&E to graduate and advanced undergraduate students with sufficient mathematical maturity and a background in computing. When departments of computer science were first created within universities worldwide during the middle of the twentieth century, numerical analysis was an important part of the curriculum. Its role within the discipline of computer science has greatly diminished over time, if not vanished altogether, and specialists in that area are now to be found mainly within other fields, in particular, mathematics and the physical sciences. A central concern of this monograph is the regrettable, downward trajectory of numerical analysis within computer science and how it can be arrested and suitably reconstituted. Resorting to a biblical metaphor, numerical algorithmics (NAS&E) as envisioned herein is neither old wine in new bottles, nor new wine in old bottles, but rather this re-emerging discipline is a decantation of an age-old vintage that can hopefully find its proper place within the larger arena of computer science, and at what appears now to be an opportune time.

Concise Guide to Numerical Algorithmics

Concise Guide to Numerical Algorithmics PDF Author: John Lawrence Nazareth
Publisher: Springer Nature
ISBN: 3031217624
Category : Computers
Languages : en
Pages : 79

Get Book Here

Book Description
Numerical Algorithmic Science and Engineering (NAS&E), or more compactly, Numerical Algorithmics, is the theoretical and empirical study and the practical implementation and application of algorithms for solving finite-dimensional problems of a numeric nature. The variables of such problems are either discrete-valued, or continuous over the reals, or, and as is often the case, a combination of the two, and they may or may not have an underlying network/graph structure. This re-emerging discipline of numerical algorithmics within computer science is the counterpart of the now well-established discipline of numerical analysis within mathematics, where the latter’s emphasis is on infinite-dimensional, continuous numerical problems and their finite-dimensional, continuous approximates. A discussion of the underlying rationale for numerical algorithmics, its foundational models of computation, its organizational details, and its role, in conjunction with numerical analysis, in support of the modern modus operandi of scientific computing, or computational science & engineering, is the primary focus of this short monograph. It comprises six chapters, each with its own bibliography. Chapters 2, 3 and 6 present the book’s primary content. Chapters 1, 4, and 5 are briefer, and they provide contextual material for the three primary chapters and smooth the transition between them. Mathematical formalism has been kept to a minimum, and, whenever possible, visual and verbal forms of presentation are employed and the discussion enlivened through the use of motivating quotations and illustrative examples. The reader is expected to have a working knowledge of the basics of computer science, an exposure to basic linear algebra and calculus (and perhaps some real analysis), and an understanding of elementary mathematical concepts such as convexity of sets and functions, networks and graphs, and so on. Although this book is not suitable for use as the principal textbook for a course on numerical algorithmics (NAS&E), it will be of value as a supplementary reference for a variety of courses. It can also serve as the primary text for a research seminar. And it can be recommended for self-study of the foundations and organization of NAS&E to graduate and advanced undergraduate students with sufficient mathematical maturity and a background in computing. When departments of computer science were first created within universities worldwide during the middle of the twentieth century, numerical analysis was an important part of the curriculum. Its role within the discipline of computer science has greatly diminished over time, if not vanished altogether, and specialists in that area are now to be found mainly within other fields, in particular, mathematics and the physical sciences. A central concern of this monograph is the regrettable, downward trajectory of numerical analysis within computer science and how it can be arrested and suitably reconstituted. Resorting to a biblical metaphor, numerical algorithmics (NAS&E) as envisioned herein is neither old wine in new bottles, nor new wine in old bottles, but rather this re-emerging discipline is a decantation of an age-old vintage that can hopefully find its proper place within the larger arena of computer science, and at what appears now to be an opportune time.

Numerical Algorithms

Numerical Algorithms PDF Author: Justin Solomon
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400

Get Book Here

Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig

Algorithms from THE BOOK

Algorithms from THE BOOK PDF Author: Kenneth Lange
Publisher: SIAM
ISBN: 1611976170
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description
Algorithms are a dominant force in modern culture, and every indication is that they will become more pervasive, not less. The best algorithms are undergirded by beautiful mathematics. This text cuts across discipline boundaries to highlight some of the most famous and successful algorithms. Readers are exposed to the principles behind these examples and guided in assembling complex algorithms from simpler building blocks. Written in clear, instructive language within the constraints of mathematical rigor, Algorithms from THE BOOK includes a large number of classroom-tested exercises at the end of each chapter. The appendices cover background material often omitted from undergraduate courses. Most of the algorithm descriptions are accompanied by Julia code, an ideal language for scientific computing. This code is immediately available for experimentation. Algorithms from THE BOOK is aimed at first-year graduate and advanced undergraduate students. It will also serve as a convenient reference for professionals throughout the mathematical sciences, physical sciences, engineering, and the quantitative sectors of the biological and social sciences.

A Student's Guide to Numerical Methods

A Student's Guide to Numerical Methods PDF Author: Ian H. Hutchinson
Publisher: Cambridge University Press
ISBN: 1107095670
Category : Computers
Languages : en
Pages : 223

Get Book Here

Book Description
The plain language style, worked examples and exercises in this book help students to understand the foundations of computational physics and engineering.

Accuracy and Stability of Numerical Algorithms

Accuracy and Stability of Numerical Algorithms PDF Author: Nicholas J. Higham
Publisher: SIAM
ISBN: 9780898718027
Category : Mathematics
Languages : en
Pages : 710

Get Book Here

Book Description
Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.

Concise Guide to Quantum Computing

Concise Guide to Quantum Computing PDF Author: Sergei Kurgalin
Publisher: Springer Nature
ISBN: 3030650529
Category : Computers
Languages : en
Pages : 122

Get Book Here

Book Description
This textbook is intended for practical, laboratory sessions associated with the course of quantum computing and quantum algorithms, as well as for self-study. It contains basic theoretical concepts and methods for solving basic types of problems and gives an overview of basic qubit operations, entangled states, quantum circuits, implementing functions, quantum Fourier transform, phase estimation, etc. The book serves as a basis for the application of new information technologies in education and corporate technical training: theoretical material and examples of practical problems, as well as exercises with, in most cases, detailed solutions, have relation to information technologies. A large number of detailed examples serve to better develop professional competencies in computer science.

Concise Guide to Computing Foundations

Concise Guide to Computing Foundations PDF Author: Kevin Brewer
Publisher: Springer
ISBN: 3319299549
Category : Computers
Languages : en
Pages : 196

Get Book Here

Book Description
This book will help future scientists to become more intelligent users of computing technology in their practice of science. The content is suitable for introductory courses on the foundations of computing and the specific application of computers in different areas of science. The text presents a set of modules for use in existing science courses in order to integrate individual aspects of computational thinking, as well as a set of modules introducing the computer science concepts needed to understand the computing involved. These modules guide science students in their independent learning. The book covers computing applications in such diverse areas as bioinformatics, chemical kinetics, hydrogeological modeling, and mechanics of materials, geographic information systems, flow analysis, the solving of equations, curve fitting, optimization, and scientific data acquisition. The computing topics covered include simulations, errors, data representation, algorithms, XMS, compression, databases, performance, and complexity.

A Concise Introduction to Image Processing using C++

A Concise Introduction to Image Processing using C++ PDF Author: Meiqing Wang
Publisher: CRC Press
ISBN: 1584888989
Category : Computers
Languages : en
Pages : 264

Get Book Here

Book Description
Image recognition has become an increasingly dynamic field with new and emerging civil and military applications in security, exploration, and robotics. Written by experts in fractal-based image and video compression, A Concise Introduction to Image Processing using C++ strengthens your knowledge of fundamentals principles in image acquisition, con

Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms

Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms PDF Author: Bo Xing
Publisher: Springer Science & Business Media
ISBN: 3319034049
Category : Technology & Engineering
Languages : en
Pages : 469

Get Book Here

Book Description
The first notable feature of this book is its innovation: Computational intelligence (CI), a fast evolving area, is currently attracting lots of researchers’ attention in dealing with many complex problems. At present, there are quite a lot competing books existing in the market. Nevertheless, the present book is markedly different from the existing books in that it presents new paradigms of CI that have rarely mentioned before, as opposed to the traditional CI techniques or methodologies employed in other books. During the past decade, a number of new CI algorithms are proposed. Unfortunately, they spread in a number of unrelated publishing directions which may hamper the use of such published resources. These provide us with motivation to analyze the existing research for categorizing and synthesizing it in a meaningful manner. The mission of this book is really important since those algorithms are going to be a new revolution in computer science. We hope it will stimulate the readers to make novel contributions or even start a new paradigm based on nature phenomena. Although structured as a textbook, the book's straightforward, self-contained style will also appeal to a wide audience of professionals, researchers and independent learners. We believe that the book will be instrumental in initiating an integrated approach to complex problems by allowing cross-fertilization of design principles from different design philosophies. The second feature of this book is its comprehensiveness: Through an extensive literature research, there are 134 innovative CI algorithms covered in this book.

Extremal Optimization

Extremal Optimization PDF Author: Yong-Zai Lu
Publisher: CRC Press
ISBN: 1315360071
Category : Computers
Languages : en
Pages : 278

Get Book Here

Book Description
Extremal Optimization: Fundamentals, Algorithms, and Applications introduces state-of-the-art extremal optimization (EO) and modified EO (MEO) solutions from fundamentals, methodologies, and algorithms to applications based on numerous classic publications and the authors’ recent original research results. It promotes the movement of EO from academic study to practical applications. The book covers four aspects, beginning with a general review of real-world optimization problems and popular solutions with a focus on computational complexity, such as "NP-hard" and the "phase transitions" occurring on the search landscape. Next, it introduces computational extremal dynamics and its applications in EO from principles, mechanisms, and algorithms to the experiments on some benchmark problems such as TSP, spin glass, Max-SAT (maximum satisfiability), and graph partition. It then presents studies on the fundamental features of search dynamics and mechanisms in EO with a focus on self-organized optimization, evolutionary probability distribution, and structure features (e.g., backbones), which are based on the authors’ recent research results. Finally, it discusses applications of EO and MEO in multiobjective optimization, systems modeling, intelligent control, and production scheduling. The authors present the advanced features of EO in solving NP-hard problems through problem formulation, algorithms, and simulation studies on popular benchmarks and industrial applications. They also focus on the development of MEO and its applications. This book can be used as a reference for graduate students, research developers, and practical engineers who work on developing optimization solutions for those complex systems with hardness that cannot be solved with mathematical optimization or other computational intelligence, such as evolutionary computations.