Author: Sheng Gong
Publisher: World Scientific Publishing Company
ISBN: 9813106980
Category : Mathematics
Languages : en
Pages : 258
Book Description
A concise textbook on complex analysis for undergraduate and graduate students, this book is written from the viewpoint of modern mathematics: the Bar {Partial}-equation, differential geometry, Lie groups, all the traditional material on complex analysis is included. Setting it apart from others, the book makes many statements and proofs of classical theorems in complex analysis simpler, shorter and more elegant: for example, the Mittag-Leffer theorem is proved using the Bar {Partial}-equation, and the Picard theorem is proved using the methods of differential geometry.
Concise Complex Analysis (Revised Edition)
Author: Sheng Gong
Publisher: World Scientific Publishing Company
ISBN: 9813106980
Category : Mathematics
Languages : en
Pages : 258
Book Description
A concise textbook on complex analysis for undergraduate and graduate students, this book is written from the viewpoint of modern mathematics: the Bar {Partial}-equation, differential geometry, Lie groups, all the traditional material on complex analysis is included. Setting it apart from others, the book makes many statements and proofs of classical theorems in complex analysis simpler, shorter and more elegant: for example, the Mittag-Leffer theorem is proved using the Bar {Partial}-equation, and the Picard theorem is proved using the methods of differential geometry.
Publisher: World Scientific Publishing Company
ISBN: 9813106980
Category : Mathematics
Languages : en
Pages : 258
Book Description
A concise textbook on complex analysis for undergraduate and graduate students, this book is written from the viewpoint of modern mathematics: the Bar {Partial}-equation, differential geometry, Lie groups, all the traditional material on complex analysis is included. Setting it apart from others, the book makes many statements and proofs of classical theorems in complex analysis simpler, shorter and more elegant: for example, the Mittag-Leffer theorem is proved using the Bar {Partial}-equation, and the Picard theorem is proved using the methods of differential geometry.
Visual Complex Analysis
Author: Tristan Needham
Publisher: Oxford University Press
ISBN: 9780198534464
Category : Mathematics
Languages : en
Pages : 620
Book Description
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Publisher: Oxford University Press
ISBN: 9780198534464
Category : Mathematics
Languages : en
Pages : 620
Book Description
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Concise Complex Analysis
Author: Sheng Gong
Publisher: World Scientific
ISBN: 9812706933
Category : Science
Languages : en
Pages : 258
Book Description
"This is a concise textbook of complex analysis for undergraduate and graduate students. Written from the viewpoint of modern mathematics - the d-equation, differential geometry, Lie group, etc. it contains all the traditional material on complex analysis. However, many statement and proofs of classical theorems in complex analysis have been made simpler, shorter and more elegant due to modern mathematical ideas and methods. For example, the Mittag-Leffer theorem is proved by the d-equation, the Picard theorem is proved using the methods of differential geometry, and so on."--BOOK JACKET.
Publisher: World Scientific
ISBN: 9812706933
Category : Science
Languages : en
Pages : 258
Book Description
"This is a concise textbook of complex analysis for undergraduate and graduate students. Written from the viewpoint of modern mathematics - the d-equation, differential geometry, Lie group, etc. it contains all the traditional material on complex analysis. However, many statement and proofs of classical theorems in complex analysis have been made simpler, shorter and more elegant due to modern mathematical ideas and methods. For example, the Mittag-Leffer theorem is proved by the d-equation, the Picard theorem is proved using the methods of differential geometry, and so on."--BOOK JACKET.
Concise Complex Analysis
Author: Sheng Gong
Publisher: World Scientific Publishing Company
ISBN: 9813105755
Category : Mathematics
Languages : en
Pages : 204
Book Description
This is a concise textbook of complex analysis for undergraduate and graduate students. It has been written from the viewpoint of modern mathematics — the -equation, differential geometry, Lie groups, etc. It contains all the traditional material on complex analysis, but many statements and proofs of classical theorems in complex analysis have been made simpler, shorter and more elegant due to modern mathematical ideas and methods. For example, the Mittag-Leffler theorem is proved by the -equation, the Picard theorem is proved using the methods of differential geometry, and so on.
Publisher: World Scientific Publishing Company
ISBN: 9813105755
Category : Mathematics
Languages : en
Pages : 204
Book Description
This is a concise textbook of complex analysis for undergraduate and graduate students. It has been written from the viewpoint of modern mathematics — the -equation, differential geometry, Lie groups, etc. It contains all the traditional material on complex analysis, but many statements and proofs of classical theorems in complex analysis have been made simpler, shorter and more elegant due to modern mathematical ideas and methods. For example, the Mittag-Leffler theorem is proved by the -equation, the Picard theorem is proved using the methods of differential geometry, and so on.
Mathematical Analysis
Author: Bernd S. W. Schröder
Publisher: John Wiley & Sons
ISBN: 9780470226766
Category : Mathematics
Languages : en
Pages : 584
Book Description
A self-contained introduction to the fundamentals of mathematical analysis Mathematical Analysis: A Concise Introduction presents the foundations of analysis and illustrates its role in mathematics. By focusing on the essentials, reinforcing learning through exercises, and featuring a unique "learn by doing" approach, the book develops the reader's proof writing skills and establishes fundamental comprehension of analysis that is essential for further exploration of pure and applied mathematics. This book is directly applicable to areas such as differential equations, probability theory, numerical analysis, differential geometry, and functional analysis. Mathematical Analysis is composed of three parts: ?Part One presents the analysis of functions of one variable, including sequences, continuity, differentiation, Riemann integration, series, and the Lebesgue integral. A detailed explanation of proof writing is provided with specific attention devoted to standard proof techniques. To facilitate an efficient transition to more abstract settings, the results for single variable functions are proved using methods that translate to metric spaces. ?Part Two explores the more abstract counterparts of the concepts outlined earlier in the text. The reader is introduced to the fundamental spaces of analysis, including Lp spaces, and the book successfully details how appropriate definitions of integration, continuity, and differentiation lead to a powerful and widely applicable foundation for further study of applied mathematics. The interrelation between measure theory, topology, and differentiation is then examined in the proof of the Multidimensional Substitution Formula. Further areas of coverage in this section include manifolds, Stokes' Theorem, Hilbert spaces, the convergence of Fourier series, and Riesz' Representation Theorem. ?Part Three provides an overview of the motivations for analysis as well as its applications in various subjects. A special focus on ordinary and partial differential equations presents some theoretical and practical challenges that exist in these areas. Topical coverage includes Navier-Stokes equations and the finite element method. Mathematical Analysis: A Concise Introduction includes an extensive index and over 900 exercises ranging in level of difficulty, from conceptual questions and adaptations of proofs to proofs with and without hints. These opportunities for reinforcement, along with the overall concise and well-organized treatment of analysis, make this book essential for readers in upper-undergraduate or beginning graduate mathematics courses who would like to build a solid foundation in analysis for further work in all analysis-based branches of mathematics.
Publisher: John Wiley & Sons
ISBN: 9780470226766
Category : Mathematics
Languages : en
Pages : 584
Book Description
A self-contained introduction to the fundamentals of mathematical analysis Mathematical Analysis: A Concise Introduction presents the foundations of analysis and illustrates its role in mathematics. By focusing on the essentials, reinforcing learning through exercises, and featuring a unique "learn by doing" approach, the book develops the reader's proof writing skills and establishes fundamental comprehension of analysis that is essential for further exploration of pure and applied mathematics. This book is directly applicable to areas such as differential equations, probability theory, numerical analysis, differential geometry, and functional analysis. Mathematical Analysis is composed of three parts: ?Part One presents the analysis of functions of one variable, including sequences, continuity, differentiation, Riemann integration, series, and the Lebesgue integral. A detailed explanation of proof writing is provided with specific attention devoted to standard proof techniques. To facilitate an efficient transition to more abstract settings, the results for single variable functions are proved using methods that translate to metric spaces. ?Part Two explores the more abstract counterparts of the concepts outlined earlier in the text. The reader is introduced to the fundamental spaces of analysis, including Lp spaces, and the book successfully details how appropriate definitions of integration, continuity, and differentiation lead to a powerful and widely applicable foundation for further study of applied mathematics. The interrelation between measure theory, topology, and differentiation is then examined in the proof of the Multidimensional Substitution Formula. Further areas of coverage in this section include manifolds, Stokes' Theorem, Hilbert spaces, the convergence of Fourier series, and Riesz' Representation Theorem. ?Part Three provides an overview of the motivations for analysis as well as its applications in various subjects. A special focus on ordinary and partial differential equations presents some theoretical and practical challenges that exist in these areas. Topical coverage includes Navier-Stokes equations and the finite element method. Mathematical Analysis: A Concise Introduction includes an extensive index and over 900 exercises ranging in level of difficulty, from conceptual questions and adaptations of proofs to proofs with and without hints. These opportunities for reinforcement, along with the overall concise and well-organized treatment of analysis, make this book essential for readers in upper-undergraduate or beginning graduate mathematics courses who would like to build a solid foundation in analysis for further work in all analysis-based branches of mathematics.
A Concise Introduction to Analysis
Author: Daniel W. Stroock
Publisher: Springer
ISBN: 3319244698
Category : Mathematics
Languages : en
Pages : 226
Book Description
This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables. Considerable space is given to developing Riemann integration theory in higher dimensions, including a rigorous treatment of Fubini's theorem, polar coordinates and the divergence theorem. These are used in the final chapter to derive Cauchy's formula, which is then applied to prove some of the basic properties of analytic functions. Among the unusual features of this book is the treatment of analytic function theory as an application of ideas and results in real analysis. For instance, Cauchy's integral formula for analytic functions is derived as an application of the divergence theorem. The last section of each chapter is devoted to exercises that should be viewed as an integral part of the text. A Concise Introduction to Analysis should appeal to upper level undergraduate mathematics students, graduate students in fields where mathematics is used, as well as to those wishing to supplement their mathematical education on their own. Wherever possible, an attempt has been made to give interesting examples that demonstrate how the ideas are used and why it is important to have a rigorous grasp of them.
Publisher: Springer
ISBN: 3319244698
Category : Mathematics
Languages : en
Pages : 226
Book Description
This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables. Considerable space is given to developing Riemann integration theory in higher dimensions, including a rigorous treatment of Fubini's theorem, polar coordinates and the divergence theorem. These are used in the final chapter to derive Cauchy's formula, which is then applied to prove some of the basic properties of analytic functions. Among the unusual features of this book is the treatment of analytic function theory as an application of ideas and results in real analysis. For instance, Cauchy's integral formula for analytic functions is derived as an application of the divergence theorem. The last section of each chapter is devoted to exercises that should be viewed as an integral part of the text. A Concise Introduction to Analysis should appeal to upper level undergraduate mathematics students, graduate students in fields where mathematics is used, as well as to those wishing to supplement their mathematical education on their own. Wherever possible, an attempt has been made to give interesting examples that demonstrate how the ideas are used and why it is important to have a rigorous grasp of them.
Complex Analysis with Applications
Author: Richard A. Silverman
Publisher: Courier Corporation
ISBN: 9780486647623
Category : Mathematics
Languages : en
Pages : 308
Book Description
The basics of what every scientist and engineer should know, from complex numbers, limits in the complex plane, and complex functions to Cauchy's theory, power series, and applications of residues. 1974 edition.
Publisher: Courier Corporation
ISBN: 9780486647623
Category : Mathematics
Languages : en
Pages : 308
Book Description
The basics of what every scientist and engineer should know, from complex numbers, limits in the complex plane, and complex functions to Cauchy's theory, power series, and applications of residues. 1974 edition.
An Introduction to Complex Function Theory
Author: Bruce P. Palka
Publisher: Springer Science & Business Media
ISBN: 038797427X
Category : Mathematics
Languages : en
Pages : 585
Book Description
This book provides a rigorous yet elementary introduction to the theory of analytic functions of a single complex variable. While presupposing in its readership a degree of mathematical maturity, it insists on no formal prerequisites beyond a sound knowledge of calculus. Starting from basic definitions, the text slowly and carefully develops the ideas of complex analysis to the point where such landmarks of the subject as Cauchy's theorem, the Riemann mapping theorem, and the theorem of Mittag-Leffler can be treated without sidestepping any issues of rigor. The emphasis throughout is a geometric one, most pronounced in the extensive chapter dealing with conformal mapping, which amounts essentially to a "short course" in that important area of complex function theory. Each chapter concludes with a wide selection of exercises, ranging from straightforward computations to problems of a more conceptual and thought-provoking nature.
Publisher: Springer Science & Business Media
ISBN: 038797427X
Category : Mathematics
Languages : en
Pages : 585
Book Description
This book provides a rigorous yet elementary introduction to the theory of analytic functions of a single complex variable. While presupposing in its readership a degree of mathematical maturity, it insists on no formal prerequisites beyond a sound knowledge of calculus. Starting from basic definitions, the text slowly and carefully develops the ideas of complex analysis to the point where such landmarks of the subject as Cauchy's theorem, the Riemann mapping theorem, and the theorem of Mittag-Leffler can be treated without sidestepping any issues of rigor. The emphasis throughout is a geometric one, most pronounced in the extensive chapter dealing with conformal mapping, which amounts essentially to a "short course" in that important area of complex function theory. Each chapter concludes with a wide selection of exercises, ranging from straightforward computations to problems of a more conceptual and thought-provoking nature.
Theory of Complex Functions
Author: Reinhold Remmert
Publisher: Springer Science & Business Media
ISBN: 1461209390
Category : Mathematics
Languages : en
Pages : 464
Book Description
A lively and vivid look at the material from function theory, including the residue calculus, supported by examples and practice exercises throughout. There is also ample discussion of the historical evolution of the theory, biographical sketches of important contributors, and citations - in the original language with their English translation - from their classical works. Yet the book is far from being a mere history of function theory, and even experts will find a few new or long forgotten gems here. Destined to accompany students making their way into this classical area of mathematics, the book offers quick access to the essential results for exam preparation. Teachers and interested mathematicians in finance, industry and science will profit from reading this again and again, and will refer back to it with pleasure.
Publisher: Springer Science & Business Media
ISBN: 1461209390
Category : Mathematics
Languages : en
Pages : 464
Book Description
A lively and vivid look at the material from function theory, including the residue calculus, supported by examples and practice exercises throughout. There is also ample discussion of the historical evolution of the theory, biographical sketches of important contributors, and citations - in the original language with their English translation - from their classical works. Yet the book is far from being a mere history of function theory, and even experts will find a few new or long forgotten gems here. Destined to accompany students making their way into this classical area of mathematics, the book offers quick access to the essential results for exam preparation. Teachers and interested mathematicians in finance, industry and science will profit from reading this again and again, and will refer back to it with pleasure.
Friendly Approach To Complex Analysis, A (Second Edition)
Author: Amol Sasane
Publisher: World Scientific
ISBN: 9811272824
Category : Mathematics
Languages : en
Pages : 219
Book Description
The book constitutes a basic, concise, yet rigorous first course in complex analysis, for undergraduate students who have studied multivariable calculus and linear algebra. The textbook should be particularly useful for students of joint programmes with mathematics, as well as engineering students seeking rigour. The aim of the book is to cover the bare bones of the subject with minimal prerequisites. The core content of the book is the three main pillars of complex analysis: the Cauchy-Riemann equations, the Cauchy Integral Theorem, and Taylor and Laurent series. Each section contains several problems, which are not drill exercises, but are meant to reinforce the fundamental concepts. Detailed solutions to all the 243 exercises appear at the end of the book, making the book ideal for self-study. There are many figures illustrating the text.The second edition corrects errors from the first edition, and includes 89 new exercises, some of which cover auxiliary topics that were omitted in the first edition. Two new appendices have been added, one containing a detailed rigorous proof of the Cauchy Integral Theorem, and another providing background in real analysis needed to make the book self-contained.
Publisher: World Scientific
ISBN: 9811272824
Category : Mathematics
Languages : en
Pages : 219
Book Description
The book constitutes a basic, concise, yet rigorous first course in complex analysis, for undergraduate students who have studied multivariable calculus and linear algebra. The textbook should be particularly useful for students of joint programmes with mathematics, as well as engineering students seeking rigour. The aim of the book is to cover the bare bones of the subject with minimal prerequisites. The core content of the book is the three main pillars of complex analysis: the Cauchy-Riemann equations, the Cauchy Integral Theorem, and Taylor and Laurent series. Each section contains several problems, which are not drill exercises, but are meant to reinforce the fundamental concepts. Detailed solutions to all the 243 exercises appear at the end of the book, making the book ideal for self-study. There are many figures illustrating the text.The second edition corrects errors from the first edition, and includes 89 new exercises, some of which cover auxiliary topics that were omitted in the first edition. Two new appendices have been added, one containing a detailed rigorous proof of the Cauchy Integral Theorem, and another providing background in real analysis needed to make the book self-contained.