Conceptual and Procedural Knowledge

Conceptual and Procedural Knowledge PDF Author: James Hiebert
Publisher: Routledge
ISBN: 1136559833
Category : Education
Languages : en
Pages : 357

Get Book

Book Description
First Published in 1986. This book is intended for those people who are interested in how mathematics is learned. It is intended especially for those who are interested in the mental processes involved in becoming mathematically competent and the mental processes that inhibit such competency from developing. The volume opens with an overview of the issue and then traces the relationships between conceptual and procedural knowledge in mathematics from preschool days through the years of formal schooling. Mathematics educators and cognitive psychologists from a variety of perspectives contribute theoretical arguments and empirical data to illuminate the nature of the relationships and, in tum, the nature of mathematics learning.

Conceptual and Procedural Knowledge

Conceptual and Procedural Knowledge PDF Author: James Hiebert
Publisher: Routledge
ISBN: 1136559833
Category : Education
Languages : en
Pages : 357

Get Book

Book Description
First Published in 1986. This book is intended for those people who are interested in how mathematics is learned. It is intended especially for those who are interested in the mental processes involved in becoming mathematically competent and the mental processes that inhibit such competency from developing. The volume opens with an overview of the issue and then traces the relationships between conceptual and procedural knowledge in mathematics from preschool days through the years of formal schooling. Mathematics educators and cognitive psychologists from a variety of perspectives contribute theoretical arguments and empirical data to illuminate the nature of the relationships and, in tum, the nature of mathematics learning.

The Oxford Handbook of Numerical Cognition

The Oxford Handbook of Numerical Cognition PDF Author: Roi Cohen Kadosh
Publisher: Oxford Library of Psychology
ISBN: 0199642346
Category : Medical
Languages : en
Pages : 1217

Get Book

Book Description
How do we understand numbers? Do animals and babies have numerical abilities? Why do some people fail to grasp numbers, and how we can improve numerical understanding? Numbers are vital to so many areas of life: in science, economics, sports, education, and many aspects of everyday life from infancy onwards. Numerical cognition is a vibrant area that brings together scientists from different and diverse research areas (e.g., neuropsychology, cognitive psychology, developmental psychology, comparative psychology, anthropology, education, and neuroscience) using different methodological approaches (e.g., behavioral studies of healthy children and adults and of patients; electrophysiology and brain imaging studies in humans; single-cell neurophysiology in non-human primates, habituation studies in human infants and animals, and computer modeling). While the study of numerical cognition had been relatively neglected for a long time, during the last decade there has been an explosion of studies and new findings. This has resulted in an enormous advance in our understanding of the neural and cognitive mechanisms of numerical cognition. In addition, there has recently been increasing interest and concern about pupils' mathematical achievement in many countries, resulting in attempts to use research to guide mathematics instruction in schools, and to develop interventions for children with mathematical difficulties. This handbook brings together the different research areas that make up the field of numerical cognition in one comprehensive and authoritative volume. The chapters provide a broad and extensive review that is written in an accessible form for scholars and students, as well as educationalists, clinicians, and policy makers. The book covers the most important aspects of research on numerical cognition from the areas of development psychology, cognitive psychology, neuropsychology and rehabilitation, learning disabilities, human and animal cognition and neuroscience, computational modeling, education and individual differences, and philosophy. Containing more than 60 chapters by leading specialists in their fields, the Oxford Handbook of Numerical Cognition is a state-of-the-art review of the current literature.

The Development of Mathematical Skills

The Development of Mathematical Skills PDF Author: Chris Donlan
Publisher: Psychology Press
ISBN: 1317715454
Category : Psychology
Languages : en
Pages : 356

Get Book

Book Description
Cutting edge research from a diverse range of viewpoints Central section dedicated to the arithmetical development of memory.

The Cambridge Handbook of Cognition and Education

The Cambridge Handbook of Cognition and Education PDF Author: John Dunlosky
Publisher: Cambridge University Press
ISBN: 1108245102
Category : Psychology
Languages : en
Pages : 1130

Get Book

Book Description
This Handbook reviews a wealth of research in cognitive and educational psychology that investigates how to enhance learning and instruction to aid students struggling to learn and to advise teachers on how best to support student learning. The Handbook includes features that inform readers about how to improve instruction and student achievement based on scientific evidence across different domains, including science, mathematics, reading and writing. Each chapter supplies a description of the learning goal, a balanced presentation of the current evidence about the efficacy of various approaches to obtaining that learning goal, and a discussion of important future directions for research in this area. It is the ideal resource for researchers continuing their study of this field or for those only now beginning to explore how to improve student achievement.

Tools for Teaching Conceptual Understanding, Secondary

Tools for Teaching Conceptual Understanding, Secondary PDF Author: Julie Stern
Publisher: Corwin Press
ISBN: 1506355722
Category : Education
Languages : en
Pages : 142

Get Book

Book Description
Students become experts and innovators through Concept-Based teaching Innovators don’t invent without a deep understanding of how the world works. With this foundation, they apply conceptual understanding to solve new problems. We want our students to not only retain ideas, but relate them to other things they encounter, using each new situation to add nuance and sophistication to their thinking. To do this, they need conceptual understanding. This book serves as a road map for Concept-Based teaching. Discover how to help students uncover conceptual relationships and transfer them to new situations. Specifically, teachers will learn: Strategies for introducing conceptual learning to students Four lesson frameworks to help students uncover conceptual relationships How to assess conceptual understanding, and How to differentiate concept-based instruction Look no further. For deep learning and innovative thinking, this book is the place to start. "The authors tear down the false dichotomies of traditional vs innovative education and provide a practical toolkit for developing creativity and applying knowledge through Concept-Based learning. Every practitioner needs this book to juxtapose what worked well in the 20th Century with what is essential in the 21st Century and beyond." Michael McDowell, Superintendent Ross School District, Ross, CA "While most good educators recognise the incredible value of teaching conceptually, it is challenging. The authors have created accessible, practical baby steps for every teacher to use." Dr. Vincent Chan, principal Fairview International School, Kuala Lumpur, Malaysia

What is Mathematics: School Guide to Conceptual Understanding of Mathematics

What is Mathematics: School Guide to Conceptual Understanding of Mathematics PDF Author: Catalin Barboianu
Publisher: PhilScience Press
ISBN: 9731991980
Category : Education
Languages : en
Pages : 315

Get Book

Book Description
This is not a mathematics book, but a book about mathematics, which addresses both student and teacher, with a goal as practical as possible, namely to initiate and smooth the way toward the student's full understanding of the mathematics taught in school. The customary procedural-formal approach to teaching mathematics has resulted in students' distorted vision of mathematics as a merely formal, instrumental, and calculatory discipline. Without the conceptual base of mathematics, students develop over time a "mathematical anxiety" and abandon any effort to understand mathematics, which becomes their "traditional enemy" in school. This work materializes the results of the inter- and trans-disciplinary research aimed toward the understanding of mathematics, which concluded that the fields with the potential to contribute to mathematics education in this respect, by unifying the procedural and conceptual approaches, are epistemology and philosophy of mathematics and science, as well as fundamentals and history of mathematics. These results argue that students' fear of mathematics can be annulled through a conceptual approach, and a student with a good conceptual understanding will be a better problem solver. The author has identified those zones and concepts from the above disciplines that can be adapted and processed for familiarizing the student with this type of knowledge, which should accompany the traditional content of school mathematics. The work was organized so as to create for the reader a unificatory image of the complex nature of mathematics, as well as a conceptual perspective ultimately necessary to the holistic understanding of school mathematics. The author talks about mathematics to convince readers that to understand mathematics means first to understand it as a whole, but also as part of a whole. The nature of mathematics, its primary concepts (like numbers and sets), its structures, language, methods, roles, and applicability, are all presented in their essential content, and the explanation of non-mathematical concepts is done in an accessible language and with many relevant examples.

Helping Children Learn Mathematics

Helping Children Learn Mathematics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309131987
Category : Education
Languages : en
Pages : 52

Get Book

Book Description
Results from national and international assessments indicate that school children in the United States are not learning mathematics well enough. Many students cannot correctly apply computational algorithms to solve problems. Their understanding and use of decimals and fractions are especially weak. Indeed, helping all children succeed in mathematics is an imperative national goal. However, for our youth to succeed, we need to change how we’re teaching this discipline. Helping Children Learn Mathematics provides comprehensive and reliable information that will guide efforts to improve school mathematics from pre--kindergarten through eighth grade. The authors explain the five strands of mathematical proficiency and discuss the major changes that need to be made in mathematics instruction, instructional materials, assessments, teacher education, and the broader educational system and answers some of the frequently asked questions when it comes to mathematics instruction. The book concludes by providing recommended actions for parents and caregivers, teachers, administrators, and policy makers, stressing the importance that everyone work together to ensure a mathematically literate society.

Learning to Teach Mathematics

Learning to Teach Mathematics PDF Author: Randall J. Souviney
Publisher: Simon & Schuster Books For Young Readers
ISBN: 9780024138415
Category : Education
Languages : en
Pages : 520

Get Book

Book Description


The Development of Arithmetic Concepts and Skills

The Development of Arithmetic Concepts and Skills PDF Author: Arthur J. Baroody
Publisher: Routledge
ISBN: 1135672229
Category : Education
Languages : en
Pages : 516

Get Book

Book Description
This volume focuses on two related questions that are central to both the psychology of mathematical thinking and learning and to the improvement of mathematics education: What is the nature of arithmetic expertise? How can instruction best promote it? Contributors from a variety of specialities, including cognitive, developmental, educational, and neurological psychology; mathematics education; and special education offer theoretical perspectives and much needed empirical evidence about these issues. As reported in this volume, both theory and research indicate that the nature of arithmetic expertise and how to best promote it are far more complex than conventional wisdom and many scholars, past and present, have suggested. The results of psychological, educational, and clinical studies using a wide range of arithmetic tasks and populations (including "normally" and atypically developing children, non-injured and brain-injured adults, and savants) all point to the same conclusion: The heart of arithmetic fluency, in general, and the flexible and creative use of strategies, in particular, is what is termed "adaptive expertise" (meaningful or conceptually based knowledge). The construction of adaptive expertise in mathematics is, for the first time, examined across various arithmetic topics and age groups. This book will be an invaluable resource for researchers and graduate students interested in mathematical cognition and learning (including mathematics educators, developmental and educational psychologists, and neuropsychologists), educators (including teachers, curriculum supervisors, and school administrators), and others interested in improving arithmetic instruction (including officials in national and local education departments, the media, and parents).

Concept-Based Curriculum and Instruction for the Thinking Classroom

Concept-Based Curriculum and Instruction for the Thinking Classroom PDF Author: H. Lynn Erickson
Publisher: Corwin Press
ISBN: 141291700X
Category : Education
Languages : en
Pages : 209

Get Book

Book Description
This indispensable guide combines proven curriculum design with teaching methods that encourage students to learn concepts as well as content and skills for deep understanding across all subject areas.