The Physics of Computing

The Physics of Computing PDF Author: Marilyn Wolf
Publisher: Elsevier
ISBN: 0128096160
Category : Technology & Engineering
Languages : en
Pages : 278

Get Book Here

Book Description
The Physics of Computing gives a foundational view of the physical principles underlying computers. Performance, power, thermal behavior, and reliability are all harder and harder to achieve as transistors shrink to nanometer scales. This book describes the physics of computing at all levels of abstraction from single gates to complete computer systems. It can be used as a course for juniors or seniors in computer engineering and electrical engineering, and can also be used to teach students in other scientific disciplines important concepts in computing. For electrical engineering, the book provides the fundamentals of computing that link core concepts to computing. For computer science, it provides foundations of key challenges such as power consumption, performance, and thermal. The book can also be used as a technical reference by professionals. - Links fundamental physics to the key challenges in computer design, including memory wall, power wall, reliability - Provides all of the background necessary to understand the physical underpinnings of key computing concepts - Covers all the major physical phenomena in computing from transistors to systems, including logic, interconnect, memory, clocking, I/O

The Physics of Computing

The Physics of Computing PDF Author: Marilyn Wolf
Publisher: Elsevier
ISBN: 0128096160
Category : Technology & Engineering
Languages : en
Pages : 278

Get Book Here

Book Description
The Physics of Computing gives a foundational view of the physical principles underlying computers. Performance, power, thermal behavior, and reliability are all harder and harder to achieve as transistors shrink to nanometer scales. This book describes the physics of computing at all levels of abstraction from single gates to complete computer systems. It can be used as a course for juniors or seniors in computer engineering and electrical engineering, and can also be used to teach students in other scientific disciplines important concepts in computing. For electrical engineering, the book provides the fundamentals of computing that link core concepts to computing. For computer science, it provides foundations of key challenges such as power consumption, performance, and thermal. The book can also be used as a technical reference by professionals. - Links fundamental physics to the key challenges in computer design, including memory wall, power wall, reliability - Provides all of the background necessary to understand the physical underpinnings of key computing concepts - Covers all the major physical phenomena in computing from transistors to systems, including logic, interconnect, memory, clocking, I/O

Computer Applications in Physics

Computer Applications in Physics PDF Author: Suresh Chandra
Publisher:
ISBN: 9781842658178
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
Because of encouraging response for first two editions of the book and for taking into account valuable suggestion from teachers as well as students, the text for Interpolation, Differentiation, Integration, Roots of an Equation, Solution of Simultaneous Equations, Eigenvalues and Eigenvectors of Matrix, Solution of Differential Equations, Solution of Partial Differential Equations, Monte Carlo Method and Simulation, Computation of some Functions is improved throughout and presented in a more systematic manner by using simple language. These techniques have vast applications in Science, Engineering and Technology. The C language is becoming popular in universities, colleges and engineering institutions. Besides the C language, programs are written in FORTRAN and BASIC languages. Consequently, this book has rather wide scope for its use. Each of the topics are developed in a systematic manner; thus making this book useful for graduate, postgraduate and engineering students. KEY FEATURES: Each topic is self explanatory and self contained Topics supported by numerical examples Computer programs are written in FORTRAN, BASIC and C Students friendly language is used

The Physics of Computing

The Physics of Computing PDF Author: Luca Gammaitoni
Publisher: Springer Nature
ISBN: 3030871088
Category : Science
Languages : en
Pages : 142

Get Book Here

Book Description
This book presents a self-contained introduction to the physics of computing, by addressing the fundamental underlying principles that involve the act of computing, regardless of the actual machine that is used to compute. Questions like “what is the minimum energy required to perform a computation?”, “what is the ultimate computational speed that a computer can achieve?” or “how long can a memory last”, are addressed here, starting from basic physics principles. The book is intended for physicists, engineers, and computer scientists, and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge in physics and mathematics.

Game Physics Engine Development

Game Physics Engine Development PDF Author: Ian Millington
Publisher: CRC Press
ISBN: 0123819776
Category : Art
Languages : en
Pages : 542

Get Book Here

Book Description
Physics is really important to game programmers who need to know how to add physical realism to their games. They need to take into account the laws of physics when creating a simulation or game engine, particularly in 3D computer graphics, for the purpose of making the effects appear more real to the observer or player.The game engine ne

Physics for Computer Science Students

Physics for Computer Science Students PDF Author: Narciso Garcia
Publisher: Springer Science & Business Media
ISBN: 1468404210
Category : Science
Languages : en
Pages : 536

Get Book Here

Book Description
This text is the product of several years' effort to develop a course to fill a specific educational gap. It is our belief that computer science students should know how a computer works, particularly in light of rapidly changing tech nologies. The text was designed for computer science students who have a calculus background but have not necessarily taken prior physics courses. However, it is clearly not limited to these students. Anyone who has had first-year physics can start with Chapter 17. This includes all science and engineering students who would like a survey course of the ideas, theories, and experiments that made our modern electronics age possible. This textbook is meant to be used in a two-semester sequence. Chapters 1 through 16 can be covered during the first semester, and Chapters 17 through 28 in the second semester. At Queens College, where preliminary drafts have been used, the material is presented in three lecture periods (50 minutes each) and one recitation period per week, 15 weeks per semester. The lecture and recitation are complemented by a two-hour laboratory period per week for the first semester and a two-hour laboratory period biweekly for the second semester.

Computer Simulation in Physics and Engineering

Computer Simulation in Physics and Engineering PDF Author: Martin Oliver Steinhauser
Publisher: Walter de Gruyter
ISBN: 3110256061
Category : Science
Languages : en
Pages : 532

Get Book Here

Book Description
This work is a needed reference for widely used techniques and methods of computer simulation in physics and other disciplines, such as materials science. Molecular dynamics computes a molecule's reactions and dynamics based on physical models; Monte Carlo uses random numbers to image a system's behaviour when there are different possible outcomes with related probabilities. The work conveys both the theoretical foundations as well as applications and "tricks of the trade", that often are scattered across various papers. Thus it will meet a need and fill a gap for every scientist who needs computer simulations for his/her task at hand. In addition to being a reference, case studies and exercises for use as course reading are included.

Applied Physics, System Science and Computers III

Applied Physics, System Science and Computers III PDF Author: Klimis Ntalianis
Publisher:
ISBN: 9783030215088
Category : Computer engineering
Languages : en
Pages : 356

Get Book Here

Book Description
This book reports on advanced theories and methods in three related fields of research: applied physics, system science and computers. The first part covers applied physics topics, such as lasers and accelerators; fluid dynamics, optics and spectroscopy, among others. It also addresses astrophysics, security, and medical and biological physics. The second part focuses on advances in computers, such as those in the area of social networks, games, internet of things, deep learning models and more. The third part is especially related to systems science, covering swarm intelligence, smart cities, complexity and more. Advances in and application of computer communication, artificial intelligence, data analysis, simulation and modeling are also addressed. The book offers a collection of contributions presented at the 3nd International Conference on Applied Physics, System Science and Computers (APSAC), held in Dubrovnik, Croatia on September 26-28, 2018. Besides presenting new methods, it is also intended to promote collaborations between different communities working on related topics at the interface between physics, computer science and engineering.

Applied Physics, System Science and Computers

Applied Physics, System Science and Computers PDF Author: Klimis Ntalianis
Publisher: Springer
ISBN: 3319539345
Category : Technology & Engineering
Languages : en
Pages : 290

Get Book Here

Book Description
This book reports on advanced theories and methods in three related fields of research: applied physics, system science and computers. It is organized in two main parts, the first of which covers applied physics topics, including lasers and accelerators; condensed matter, soft matter and materials science; nanoscience and quantum engineering; atomic, molecular, optical and plasma physics; as well as nuclear and high-energy particle physics. It also addresses astrophysics, gravitation, earth and environmental science, as well as medical and biological physics. The second part focuses on advances in system science and computers, exploring automatic circuit control, power systems, computer communication, fluid mechanics, simulation and modeling, software engineering, data structures and applications of artificial intelligence among other areas. Offering a collection of contributions presented at the 1st International Conference on Applied Physics, System Science and Computers (APSAC 2016), the book bridges the gap between applied physics and electrical engineering. It not only to presents new methods, but also promotes collaborations between different communities working on related topics at the interface between physics and engineering, with a special focus on communication, data modeling and visualization, quantum information, applied mechanics as well as bio and geophysics.

Basic Concepts in Physics

Basic Concepts in Physics PDF Author: Masud Chaichian
Publisher: Springer Science & Business Media
ISBN: 3642195989
Category : Science
Languages : en
Pages : 385

Get Book Here

Book Description
"Basic Concepts in Physics: From the Cosmos to Quarks" is the outcome of the authors' long and varied teaching experience in different countries and for different audiences, and gives an accessible and eminently readable introduction to all the main ideas of modern physics. The book’s fresh approach, using a novel combination of historical and conceptual viewpoints, makes it ideal complementary reading to more standard textbooks. The first five chapters are devoted to classical physics, from planetary motion to special relativity, always keeping in mind its relevance to questions of contemporary interest. The next six chapters deal mainly with newer developments in physics, from quantum theory and general relativity to grand unified theories, and the book concludes by discussing the role of physics in living systems. A basic grounding in mathematics is required of the reader, but technicalities are avoided as far as possible; thus complex calculations are omitted so long as the essential ideas remain clear. The book is addressed to undergraduate and graduate students in physics and will also be appreciated by many professional physicists. It will likewise be of interest to students, researchers and teachers of other natural sciences, as well as to engineers, high-school teachers and the curious general reader, who will come to understand what physics is about and how it describes the different phenomena of Nature. Not only will readers of this book learn much about physics, they will also learn to love it.

Basic Semiconductor Physics

Basic Semiconductor Physics PDF Author: Chihiro Hamaguchi
Publisher: Springer
ISBN: 3319668609
Category : Technology & Engineering
Languages : en
Pages : 723

Get Book Here

Book Description
The new edition of this textbook presents a detailed description of basic semiconductor physics. The text covers a wide range of important phenomena in semiconductors, from the simple to the advanced. Four different methods of energy band calculations in the full band region are explained: local empirical pseudopotential, non-local pseudopotential, KP perturbation and tight-binding methods. The effective mass approximation and electron motion in a periodic potential, Boltzmann transport equation and deformation potentials used for analysis of transport properties are discussed. Further, the book examines experiments and theoretical analyses of cyclotron resonance in detail. Optical and transport properties, magneto-transport, two-dimensional electron gas transport (HEMT and MOSFET) and quantum transport are reviewed, while optical transition, electron-phonon interaction and electron mobility are also addressed. Energy and electronic structure of a quantum dot (artificial atom) are explained with the help of Slater determinants. The physics of semiconductor lasers is also described, including Einstein coefficients, stimulated emission, spontaneous emission, laser gain, double heterostructures, blue lasers, optical confinement, laser modes, and strained quantum well lasers, offering insights into the physics of various kinds of semiconductor lasers. In this third edition, energy band calculations in full band zone with spin-orbit interaction are presented, showing all the matrix elements and equipping the reader to prepare computer programs of energy band calculations. The Luttinger Hamiltonian is discussed and used to analyze the valence band structure. Numerical calculations of scattering rate, relaxation time, and mobility are presented for typical semiconductors, which are very helpful for understanding of transport. Energy band structures and effective masses of nitrides such as GaN, InN, AlN and their ternary alloys are discussed because they are very important materials for the blue light emission, and high power devices with and high frequency. Learning and teaching with this textbook is supported by problems and solutions in the end of the chapters. The book is written for bachelor and upper undergraduate students of physics and engineering.