Computer Vision on AWS

Computer Vision on AWS PDF Author: Lauren Mullennex
Publisher: Packt Publishing Ltd
ISBN: 1803248203
Category : Computers
Languages : en
Pages : 324

Get Book Here

Book Description
Develop scalable computer vision solutions for real-world business problems and discover scaling, cost reduction, security, and bias mitigation best practices with AWS AI/ML services Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn how to quickly deploy and automate end-to-end CV pipelines on AWS Implement design principles to mitigate bias and scale production of CV workloads Work with code examples to master CV concepts using AWS AI/ML services Book Description Computer vision (CV) is a field of artificial intelligence that helps transform visual data into actionable insights to solve a wide range of business challenges. This book provides prescriptive guidance to anyone looking to learn how to approach CV problems for quickly building and deploying production-ready models. You'll begin by exploring the applications of CV and the features of Amazon Rekognition and Amazon Lookout for Vision. The book will then walk you through real-world use cases such as identity verification, real-time video analysis, content moderation, and detecting manufacturing defects that'll enable you to understand how to implement AWS AI/ML services. As you make progress, you'll also use Amazon SageMaker for data annotation, training, and deploying CV models. In the concluding chapters, you'll work with practical code examples, and discover best practices and design principles for scaling, reducing cost, improving the security posture, and mitigating bias of CV workloads. By the end of this AWS book, you'll be able to accelerate your business outcomes by building and implementing CV into your production environments with the help of AWS AI/ML services. What you will learn Apply CV across industries, including e-commerce, logistics, and media Build custom image classifiers with Amazon Rekognition Custom Labels Create automated end-to-end CV workflows on AWS Detect product defects on edge devices using Amazon Lookout for Vision Build, deploy, and monitor CV models using Amazon SageMaker Discover best practices for designing and evaluating CV workloads Develop an AI governance strategy across the entire machine learning life cycle Who this book is for If you are a machine learning engineer or data scientist looking to discover best practices and learn how to build comprehensive CV solutions on AWS, this book is for you. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. A solid understanding of machine learning concepts and the Python programming language will also be beneficial.

Computer Vision on AWS

Computer Vision on AWS PDF Author: Lauren Mullennex
Publisher: Packt Publishing Ltd
ISBN: 1803248203
Category : Computers
Languages : en
Pages : 324

Get Book Here

Book Description
Develop scalable computer vision solutions for real-world business problems and discover scaling, cost reduction, security, and bias mitigation best practices with AWS AI/ML services Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn how to quickly deploy and automate end-to-end CV pipelines on AWS Implement design principles to mitigate bias and scale production of CV workloads Work with code examples to master CV concepts using AWS AI/ML services Book Description Computer vision (CV) is a field of artificial intelligence that helps transform visual data into actionable insights to solve a wide range of business challenges. This book provides prescriptive guidance to anyone looking to learn how to approach CV problems for quickly building and deploying production-ready models. You'll begin by exploring the applications of CV and the features of Amazon Rekognition and Amazon Lookout for Vision. The book will then walk you through real-world use cases such as identity verification, real-time video analysis, content moderation, and detecting manufacturing defects that'll enable you to understand how to implement AWS AI/ML services. As you make progress, you'll also use Amazon SageMaker for data annotation, training, and deploying CV models. In the concluding chapters, you'll work with practical code examples, and discover best practices and design principles for scaling, reducing cost, improving the security posture, and mitigating bias of CV workloads. By the end of this AWS book, you'll be able to accelerate your business outcomes by building and implementing CV into your production environments with the help of AWS AI/ML services. What you will learn Apply CV across industries, including e-commerce, logistics, and media Build custom image classifiers with Amazon Rekognition Custom Labels Create automated end-to-end CV workflows on AWS Detect product defects on edge devices using Amazon Lookout for Vision Build, deploy, and monitor CV models using Amazon SageMaker Discover best practices for designing and evaluating CV workloads Develop an AI governance strategy across the entire machine learning life cycle Who this book is for If you are a machine learning engineer or data scientist looking to discover best practices and learn how to build comprehensive CV solutions on AWS, this book is for you. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. A solid understanding of machine learning concepts and the Python programming language will also be beneficial.

Computer Vision on AWS

Computer Vision on AWS PDF Author: Lauren Mullennex
Publisher: Packt Publishing Ltd
ISBN: 1803248203
Category : Computers
Languages : en
Pages : 324

Get Book Here

Book Description
Develop scalable computer vision solutions for real-world business problems and discover scaling, cost reduction, security, and bias mitigation best practices with AWS AI/ML services Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn how to quickly deploy and automate end-to-end CV pipelines on AWS Implement design principles to mitigate bias and scale production of CV workloads Work with code examples to master CV concepts using AWS AI/ML services Book Description Computer vision (CV) is a field of artificial intelligence that helps transform visual data into actionable insights to solve a wide range of business challenges. This book provides prescriptive guidance to anyone looking to learn how to approach CV problems for quickly building and deploying production-ready models. You'll begin by exploring the applications of CV and the features of Amazon Rekognition and Amazon Lookout for Vision. The book will then walk you through real-world use cases such as identity verification, real-time video analysis, content moderation, and detecting manufacturing defects that'll enable you to understand how to implement AWS AI/ML services. As you make progress, you'll also use Amazon SageMaker for data annotation, training, and deploying CV models. In the concluding chapters, you'll work with practical code examples, and discover best practices and design principles for scaling, reducing cost, improving the security posture, and mitigating bias of CV workloads. By the end of this AWS book, you'll be able to accelerate your business outcomes by building and implementing CV into your production environments with the help of AWS AI/ML services. What you will learn Apply CV across industries, including e-commerce, logistics, and media Build custom image classifiers with Amazon Rekognition Custom Labels Create automated end-to-end CV workflows on AWS Detect product defects on edge devices using Amazon Lookout for Vision Build, deploy, and monitor CV models using Amazon SageMaker Discover best practices for designing and evaluating CV workloads Develop an AI governance strategy across the entire machine learning life cycle Who this book is for If you are a machine learning engineer or data scientist looking to discover best practices and learn how to build comprehensive CV solutions on AWS, this book is for you. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. A solid understanding of machine learning concepts and the Python programming language will also be beneficial.

Modern Computer Vision with PyTorch

Modern Computer Vision with PyTorch PDF Author: V Kishore Ayyadevara
Publisher: Packt Publishing Ltd
ISBN: 1803240938
Category : Computers
Languages : en
Pages : 747

Get Book Here

Book Description
The definitive computer vision book is back, featuring the latest neural network architectures and an exploration of foundation and diffusion models Purchase of the print or Kindle book includes a free eBook in PDF format Key Features Understand the inner workings of various neural network architectures and their implementation, including image classification, object detection, segmentation, generative adversarial networks, transformers, and diffusion models Build solutions for real-world computer vision problems using PyTorch All the code files are available on GitHub and can be run on Google Colab Book DescriptionWhether you are a beginner or are looking to progress in your computer vision career, this book guides you through the fundamentals of neural networks (NNs) and PyTorch and how to implement state-of-the-art architectures for real-world tasks. The second edition of Modern Computer Vision with PyTorch is fully updated to explain and provide practical examples of the latest multimodal models, CLIP, and Stable Diffusion. You’ll discover best practices for working with images, tweaking hyperparameters, and moving models into production. As you progress, you'll implement various use cases for facial keypoint recognition, multi-object detection, segmentation, and human pose detection. This book provides a solid foundation in image generation as you explore different GAN architectures. You’ll leverage transformer-based architectures like ViT, TrOCR, BLIP2, and LayoutLM to perform various real-world tasks and build a diffusion model from scratch. Additionally, you’ll utilize foundation models' capabilities to perform zero-shot object detection and image segmentation. Finally, you’ll learn best practices for deploying a model to production. By the end of this deep learning book, you'll confidently leverage modern NN architectures to solve real-world computer vision problems.What you will learn Get to grips with various transformer-based architectures for computer vision, CLIP, Segment-Anything, and Stable Diffusion, and test their applications, such as in-painting and pose transfer Combine CV with NLP to perform OCR, key-value extraction from document images, visual question-answering, and generative AI tasks Implement multi-object detection and segmentation Leverage foundation models to perform object detection and segmentation without any training data points Learn best practices for moving a model to production Who this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who want to learn computer vision techniques using deep learning and PyTorch. It's useful for those just getting started with neural networks, as it will enable readers to learn from real-world use cases accompanied by notebooks on GitHub. Basic knowledge of the Python programming language and ML is all you need to get started with this book. For more experienced computer vision scientists, this book takes you through more advanced models in the latter part of the book.

Deep Learning for Computer Vision

Deep Learning for Computer Vision PDF Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 564

Get Book Here

Book Description
Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.

Machine Learning in the AWS Cloud

Machine Learning in the AWS Cloud PDF Author: Abhishek Mishra
Publisher: John Wiley & Sons
ISBN: 1119556732
Category : Computers
Languages : en
Pages : 531

Get Book Here

Book Description
Put the power of AWS Cloud machine learning services to work in your business and commercial applications! Machine Learning in the AWS Cloud introduces readers to the machine learning (ML) capabilities of the Amazon Web Services ecosystem and provides practical examples to solve real-world regression and classification problems. While readers do not need prior ML experience, they are expected to have some knowledge of Python and a basic knowledge of Amazon Web Services. Part One introduces readers to fundamental machine learning concepts. You will learn about the types of ML systems, how they are used, and challenges you may face with ML solutions. Part Two focuses on machine learning services provided by Amazon Web Services. You’ll be introduced to the basics of cloud computing and AWS offerings in the cloud-based machine learning space. Then you’ll learn to use Amazon Machine Learning to solve a simpler class of machine learning problems, and Amazon SageMaker to solve more complex problems. • Learn techniques that allow you to preprocess data, basic feature engineering, visualizing data, and model building • Discover common neural network frameworks with Amazon SageMaker • Solve computer vision problems with Amazon Rekognition • Benefit from illustrations, source code examples, and sidebars in each chapter The book appeals to both Python developers and technical/solution architects. Developers will find concrete examples that show them how to perform common ML tasks with Python on AWS. Technical/solution architects will find useful information on the machine learning capabilities of the AWS ecosystem.

Handbook of Research on Computer Vision and Image Processing in the Deep Learning Era

Handbook of Research on Computer Vision and Image Processing in the Deep Learning Era PDF Author: Srinivasan, A.
Publisher: IGI Global
ISBN: 1799888940
Category : Computers
Languages : en
Pages : 467

Get Book Here

Book Description
In recent decades, there has been an increasing interest in using machine learning and, in the last few years, deep learning methods combined with other vision and image processing techniques to create systems that solve vision problems in different fields. There is a need for academicians, developers, and industry-related researchers to present, share, and explore traditional and new areas of computer vision, machine learning, deep learning, and their combinations to solve problems. The Handbook of Research on Computer Vision and Image Processing in the Deep Learning Era is designed to serve researchers and developers by sharing original, innovative, and state-of-the-art algorithms and architectures for applications in the areas of computer vision, image processing, biometrics, virtual and augmented reality, and more. It integrates the knowledge of the growing international community of researchers working on the application of machine learning and deep learning methods in vision and robotics. Covering topics such as brain tumor detection, heart disease prediction, and medical image detection, this premier reference source is an exceptional resource for medical professionals, faculty and students of higher education, business leaders and managers, librarians, government officials, researchers, and academicians.

Intelligent Document Processing with AWS AI/ML

Intelligent Document Processing with AWS AI/ML PDF Author: Sonali Sahu
Publisher: Packt Publishing Ltd
ISBN: 1803233532
Category : Computers
Languages : en
Pages : 246

Get Book Here

Book Description
Build real-world artificial intelligence applications across industries with the help of intelligent document processing Key FeaturesTackle common document processing problems to extract value from any type of documentUnlock deeper levels of insights on IDP in a more structured and accelerated way using AWS AI/MLApply your knowledge to solve real document analysis problems in various industry applicationsBook Description With the volume of data growing exponentially in this digital era, it has become paramount for professionals to process this data in an accelerated and cost-effective manner to get value out of it. Data that organizations receive is usually in raw document format, and being able to process these documents is critical to meeting growing business needs. This book is a comprehensive guide to helping you get to grips with AI/ML fundamentals and their application in document processing use cases. You'll begin by understanding the challenges faced in legacy document processing and discover how you can build end-to-end document processing pipelines with AWS AI services. As you advance, you'll get hands-on experience with popular Python libraries to process and extract insights from documents. This book starts with the basics, taking you through real industry use cases for document processing to deliver value-based care in the healthcare industry and accelerate loan application processing in the financial industry. Throughout the chapters, you'll find out how to apply your skillset to solve practical problems. By the end of this AWS book, you'll have mastered the fundamentals of document processing with machine learning through practical implementation. What you will learnUnderstand the requirements and challenges in deriving insights from a documentExplore common stages in the intelligent document processing pipelineDiscover how AWS AI/ML can successfully automate IDP pipelinesFind out how to write clean and elegant Python code by leveraging AIGet to grips with the concepts and functionalities of AWS AI servicesExplore IDP across industries such as insurance, healthcare, finance, and the public sectorDetermine how to apply business rules in IDPBuild, train, and deploy models with serverless architecture for IDPWho this book is for This book is for technical professionals and thought leaders who want to understand and solve business problems by leveraging insights from their documents. If you want to learn about machine learning and artificial intelligence, and work with real-world use cases such as document processing with technology, this book is for you. To make the most of this book, you should have basic knowledge of AI/ML and python programming concepts. This book is also especially useful for developers looking to explore AI/ML with industry use cases.

Trillion Dollar Data Hives: Unleashing the Power of Data for Business Successes

Trillion Dollar Data Hives: Unleashing the Power of Data for Business Successes PDF Author: Raj Varma
Publisher: Blue Rose Publishers
ISBN:
Category : Business & Economics
Languages : en
Pages : 174

Get Book Here

Book Description
Unlocking the Secrets of Trillion Dollar Data Hives Data has become the lifeblood of modern businesses. But what does it really take to build an unstoppable data hive? In this insightful book, readers will go behind the scenes of the world's largest data-driven enterprises like Google, Amazon, and Facebook. They will discover how these companies transformed from startups into trillion-dollar giants by mastering the art of data collection and analytics. Through real-world case studies and interviews with industry leaders, learn: How to evolve your organization into a bustling "data ecosystem' that collaborates to gain valuable insights. • Effective strategies for collecting and storing vast amounts of customer and operational data securely at scale. • Powerful techniques for applying artificial intelligence to amplify human intelligence and supercharge decision-making. • Practical ways to harness data-driven insights across departments to revolutionize products, marketing, and overall business strategy. For any executive seeking to understand the dato-first principles that separate industry disruptors, this book delivers unprecedented access into the trillion-dollar data hives shaping the future of business. Its lessons will help you unlock new frontiers of growth in the digital age.

The Self-Taught Cloud Computing Engineer

The Self-Taught Cloud Computing Engineer PDF Author: Dr. Logan Song
Publisher: Packt Publishing Ltd
ISBN: 180512868X
Category : Computers
Languages : en
Pages : 472

Get Book Here

Book Description
Transform into a cloud-savvy professional by mastering cloud technologies through hands-on projects and expert guidance, paving the way for a thriving cloud computing career Key Features Learn all about cloud computing at your own pace with this easy-to-follow guide Develop a well-rounded skill set, encompassing fundamentals, data, machine learning, and security Work on real-world industrial projects and business use cases, and chart a path for your personal cloud career advancement Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe Self-Taught Cloud Computing Engineer is a comprehensive guide to mastering cloud computing concepts by building a broad and deep cloud knowledge base, developing hands-on cloud skills, and achieving professional cloud certifications. Even if you’re a beginner with a basic understanding of computer hardware and software, this book serves as the means to transition into a cloud computing career. Starting with the Amazon cloud, you’ll explore the fundamental AWS cloud services, then progress to advanced AWS cloud services in the domains of data, machine learning, and security. Next, you’ll build proficiency in Microsoft Azure Cloud and Google Cloud Platform (GCP) by examining the common attributes of the three clouds while distinguishing their unique features. You’ll further enhance your skills through practical experience on these platforms with real-life cloud project implementations. Finally, you’ll find expert guidance on cloud certifications and career development. By the end of this cloud computing book, you’ll have become a cloud-savvy professional well-versed in AWS, Azure, and GCP, ready to pursue cloud certifications to validate your skills.What you will learn Develop the core skills needed to work with cloud computing platforms such as AWS, Azure, and GCP Gain proficiency in compute, storage, and networking services across multi-cloud and hybrid-cloud environments Integrate cloud databases, big data, and machine learning services in multi-cloud environments Design and develop data pipelines, encompassing data ingestion, storage, processing, and visualization in the clouds Implement machine learning pipelines in a multi-cloud environment Secure cloud infrastructure ecosystems with advanced cloud security services Who this book is for Whether you're new to cloud computing or a seasoned professional looking to expand your expertise, this book is for anyone in the information technology domain who aspires to thrive in the realm of cloud computing. With this comprehensive roadmap, you’ll have the tools to build a successful cloud computing career.

Learn Amazon SageMaker

Learn Amazon SageMaker PDF Author: Julien Simon
Publisher: Packt Publishing Ltd
ISBN: 1800203594
Category : Computers
Languages : en
Pages : 490

Get Book Here

Book Description
Quickly build and deploy machine learning models without managing infrastructure, and improve productivity using Amazon SageMaker’s capabilities such as Amazon SageMaker Studio, Autopilot, Experiments, Debugger, and Model Monitor Key FeaturesBuild, train, and deploy machine learning models quickly using Amazon SageMakerAnalyze, detect, and receive alerts relating to various business problems using machine learning algorithms and techniquesImprove productivity by training and fine-tuning machine learning models in productionBook Description Amazon SageMaker enables you to quickly build, train, and deploy machine learning (ML) models at scale, without managing any infrastructure. It helps you focus on the ML problem at hand and deploy high-quality models by removing the heavy lifting typically involved in each step of the ML process. This book is a comprehensive guide for data scientists and ML developers who want to learn the ins and outs of Amazon SageMaker. You’ll understand how to use various modules of SageMaker as a single toolset to solve the challenges faced in ML. As you progress, you’ll cover features such as AutoML, built-in algorithms and frameworks, and the option for writing your own code and algorithms to build ML models. Later, the book will show you how to integrate Amazon SageMaker with popular deep learning libraries such as TensorFlow and PyTorch to increase the capabilities of existing models. You’ll also learn to get the models to production faster with minimum effort and at a lower cost. Finally, you’ll explore how to use Amazon SageMaker Debugger to analyze, detect, and highlight problems to understand the current model state and improve model accuracy. By the end of this Amazon book, you’ll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation. What you will learnCreate and automate end-to-end machine learning workflows on Amazon Web Services (AWS)Become well-versed with data annotation and preparation techniquesUse AutoML features to build and train machine learning models with AutoPilotCreate models using built-in algorithms and frameworks and your own codeTrain computer vision and NLP models using real-world examplesCover training techniques for scaling, model optimization, model debugging, and cost optimizationAutomate deployment tasks in a variety of configurations using SDK and several automation toolsWho this book is for This book is for software engineers, machine learning developers, data scientists, and AWS users who are new to using Amazon SageMaker and want to build high-quality machine learning models without worrying about infrastructure. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. Some understanding of machine learning concepts and the Python programming language will also be beneficial.