Computer Vision Based Robot Calibration and Control

Computer Vision Based Robot Calibration and Control PDF Author: Boris M. Preising
Publisher:
ISBN:
Category :
Languages : en
Pages : 552

Get Book Here

Book Description

Computer Vision Based Robot Calibration and Control

Computer Vision Based Robot Calibration and Control PDF Author: Boris M. Preising
Publisher:
ISBN:
Category :
Languages : en
Pages : 552

Get Book Here

Book Description


Camera-Aided Robot Calibration

Camera-Aided Robot Calibration PDF Author: Hangi Zhuang
Publisher: CRC Press
ISBN: 1351462733
Category : Technology & Engineering
Languages : en
Pages : 376

Get Book Here

Book Description
Robot calibration is the process of enhancing the accuracy of a robot by modifying its control software. This book provides a comprehensive treatment of the theory and implementation of robot calibration using computer vision technology. It is the only book to cover the entire process of vision-based robot calibration, including kinematic modeling, camera calibration, pose measurement, error parameter identification, and compensation. The book starts with an overview of available techniques for robot calibration, with an emphasis on vision-based techniques. It then describes various robot-camera systems. Since cameras are used as major measuring devices, camera calibration techniques are reviewed. Camera-Aided Robot Calibration studies the properties of kinematic modeling techniques that are suitable for robot calibration. It summarizes the well-known Denavit-Hartenberg (D-H) modeling convention and indicates the drawbacks of the D-H model for robot calibration. The book develops the Complete and Parametrically Continuous (CPC) model and the modified CPC model, that overcome the D-H model singularities. The error models based on these robot kinematic modeling conventions are presented. No other book available addresses the important, practical issue of hand/eye calibration. This book summarizes current research developments and demonstrates the pros and cons of various approaches in this area. The book discusses in detail the final stage of robot calibration - accuracy compensation - using the identified kinematic error parameters. It offers accuracy compensation algorithms, including the intuitive task-point redefinition and inverse-Jacobian algorithms and more advanced algorithms based on optimal control theory, which are particularly attractive for highly redundant manipulators. Camera-Aided Robot Calibration defines performance indices that are designed for off-line, optimal selection of measurement configurations. It then describes three approaches: closed-form, gradient-based, and statistical optimization. The included case study presents experimental results that were obtained by calibrating common industrial robots. Different stages of operation are detailed, illustrating the applicability of the suggested techniques for robot calibration. Appendices provide readers with preliminary materials for easier comprehension of the subject matter. Camera-Aided Robot Calibration is a must-have reference for researchers and practicing engineers-the only one with all the information!

Robot Vision

Robot Vision PDF Author: A. Pugh
Publisher: Springer Science & Business Media
ISBN: 3662097710
Category : Technology & Engineering
Languages : en
Pages : 347

Get Book Here

Book Description
Over the past five years robot vision has emerged as a subject area with its own identity. A text based on the proceedings of the Symposium on Computer Vision and Sensor-based Robots held at the General Motors Research Laboratories, Warren, Michigan in 1978, was published by Plenum Press in 1979. This book, edited by George G. Dodd and Lothar Rosso!, probably represented the first identifiable book covering some aspects of robot vision. The subject of robot vision and sensory controls (RoViSeC) occupied an entire international conference held in the Hilton Hotel in Stratford, England in May 1981. This was followed by a second RoViSeC held in Stuttgart, Germany in November 1982. The large attendance at the Stratford conference and the obvious interest in the subject of robot vision at international robot meetings, provides the stimulus for this current collection of papers. Users and researchers entering the field of robot vision for the first time will encounter a bewildering array of publications on all aspects of computer vision of which robot vision forms a part. It is the grey area dividing the different aspects of computer vision which is not easy to identify. Even those involved in research sometimes find difficulty in separating the essential differences between vision for automated inspection and vision for robot applications. Both of these are to some extent applications of pattern recognition with the underlying philosophy of each defining the techniques used.

Vision Based Identification and Force Control of Industrial Robots

Vision Based Identification and Force Control of Industrial Robots PDF Author: Abdullah Aamir Hayat
Publisher: Springer Nature
ISBN: 9811669902
Category : Technology & Engineering
Languages : en
Pages : 212

Get Book Here

Book Description
This book focuses on end-to-end robotic applications using vision and control algorithms, exposing its readers to design innovative solutions towards sensors-guided robotic bin-picking and assembly in an unstructured environment. The use of sensor fusion is demonstrated through a bin-picking task of texture-less cylindrical objects. The system identification techniques are also discussed for obtaining precise kinematic and dynamic parameters of an industrial robot which facilitates the control schemes to perform pick-and-place tasks autonomously without any interference from the user. The uniqueness of this book lies in a judicious balance between theory and technology within the context of industrial application. Therefore, it will be valuable to researchers working in the area of vision- and force control- based robotics, as well as beginners in this inter-disciplinary area, as it deals with the basics and technologically advanced research strategies.

Robot Vision

Robot Vision PDF Author: Stefan Florczyk
Publisher: John Wiley & Sons
ISBN: 352760491X
Category : Technology & Engineering
Languages : en
Pages : 216

Get Book Here

Book Description
The book is intended for advanced students in physics, mathematics, computer science, electrical engineering, robotics, engine engineering and for specialists in computer vision and robotics on the techniques for the development of vision-based robot projects. It focusses on autonomous and mobile service robots for indoor work, and teaches the techniques for the development of vision-based robot projects. A basic knowledge of informatics is assumed, but the basic introduction helps to adjust the knowledge of the reader accordingly. A practical treatment of the material enables a comprehensive understanding of how to handle specific problems, such as inhomogeneous illumination or occlusion. With this book, the reader should be able to develop object-oriented programs and show mathematical basic understanding. Such topics as image processing, navigation, camera types and camera calibration structure the described steps of developing further applications of vision-based robot projects.

Visual Servoing

Visual Servoing PDF Author: Koichi Hashimoto
Publisher: World Scientific
ISBN: 9789810246068
Category : Technology & Engineering
Languages : en
Pages : 378

Get Book Here

Book Description
This book treats visual feedback control of mechanical systems, mostly robot manipulators. It not only deals with image processing techniques and robot control schemes but also covers the latest investigation of the design of the visual servo mechanism based on modern linear and nonlinear control theory, the adaptive control scheme, fuzzy logic, and neural networks. New concepts for utilizing visual sensory information for real-time manipulator control are derived and the performances are evaluated through simulations and/or experiments.The contributors to this book are robotics specialists from all over the world. The book gives a practical perspective on visual servoing to researchers, engineers, and students working in this area.

Robotics, Vision and Control

Robotics, Vision and Control PDF Author: Peter Corke
Publisher: Springer Nature
ISBN: 3031072626
Category : Technology & Engineering
Languages : en
Pages : 833

Get Book Here

Book Description
This textbook provides a comprehensive, but tutorial, introduction to robotics, computer vision, and control. It is written in a light but informative conversational style, weaving text, figures, mathematics, and lines of code into a cohesive narrative. Over 1600 code examples show how complex problems can be decomposed and solved using just a few simple lines of code. This edition is based on MATLAB® and a number of MathWorks® toolboxes. These provide a set of supported software tools for addressing a broad range of applications in robotics and computer vision. These toolboxes enable the reader to easily bring the algorithmic concepts into practice and work with real, non-trivial, problems. For the beginning student, the book makes the algorithms accessible, the toolbox code can be read to gain understanding, and the examples illustrate how it can be used. The code can also be the starting point for new work, for practitioners, students, or researchers, by writing programs based on toolbox functions. Two co-authors from MathWorks have joined the writing team and bring deep knowledge of these MATLAB toolboxes and workflows.

Learning-Based Robot Vision

Learning-Based Robot Vision PDF Author: Josef Pauli
Publisher: Springer
ISBN: 3540451242
Category : Computers
Languages : en
Pages : 292

Get Book Here

Book Description
Industrial robots carry out simple tasks in customized environments for which it is typical that nearly all e?ector movements can be planned during an - line phase. A continual control based on sensory feedback is at most necessary at e?ector positions near target locations utilizing torque or haptic sensors. It is desirable to develop new-generation robots showing higher degrees of autonomy for solving high-level deliberate tasks in natural and dynamic en- ronments. Obviously, camera-equipped robot systems, which take and process images and make use of the visual data, can solve more sophisticated robotic tasks. The development of a (semi-) autonomous camera-equipped robot must be grounded on an infrastructure, based on which the system can acquire and/or adapt task-relevant competences autonomously. This infrastructure consists of technical equipment to support the presentation of real world training samples, various learning mechanisms for automatically acquiring function approximations, and testing methods for evaluating the quality of the learned functions. Accordingly, to develop autonomous camera-equipped robot systems one must ?rst demonstrate relevant objects, critical situations, and purposive situation-action pairs in an experimental phase prior to the application phase. Secondly, the learning mechanisms are responsible for - quiring image operators and mechanisms of visual feedback control based on supervised experiences in the task-relevant, real environment. This paradigm of learning-based development leads to the concepts of compatibilities and manifolds. Compatibilities are general constraints on the process of image formation which hold more or less under task-relevant or accidental variations of the imaging conditions.

Robotics, Vision and Control

Robotics, Vision and Control PDF Author: Peter Corke
Publisher: Springer Science & Business Media
ISBN: 3642201431
Category : Technology & Engineering
Languages : en
Pages : 574

Get Book Here

Book Description
The practice of robotics and computer vision both involve the application of computational algorithms to data. Over the fairly recent history of the fields of robotics and computer vision a very large body of algorithms has been developed. However this body of knowledge is something of a barrier for anybody entering the field, or even looking to see if they want to enter the field — What is the right algorithm for a particular problem?, and importantly, How can I try it out without spending days coding and debugging it from the original research papers? The author has maintained two open-source MATLAB Toolboxes for more than 10 years: one for robotics and one for vision. The key strength of the Toolboxes provide a set of tools that allow the user to work with real problems, not trivial examples. For the student the book makes the algorithms accessible, the Toolbox code can be read to gain understanding, and the examples illustrate how it can be used —instant gratification in just a couple of lines of MATLAB code. The code can also be the starting point for new work, for researchers or students, by writing programs based on Toolbox functions, or modifying the Toolbox code itself. The purpose of this book is to expand on the tutorial material provided with the toolboxes, add many more examples, and to weave this into a narrative that covers robotics and computer vision separately and together. The author shows how complex problems can be decomposed and solved using just a few simple lines of code, and hopefully to inspire up and coming researchers. The topics covered are guided by the real problems observed over many years as a practitioner of both robotics and computer vision. It is written in a light but informative style, it is easy to read and absorb, and includes a lot of Matlab examples and figures. The book is a real walk through the fundamentals of robot kinematics, dynamics and joint level control, then camera models, image processing, feature extraction and epipolar geometry, and bring it all together in a visual servo system. Additional material is provided at http://www.petercorke.com/RVC

Active Robot Vision

Active Robot Vision PDF Author: H. I. Christensen
Publisher: World Scientific
ISBN: 9789810213213
Category : Technology & Engineering
Languages : en
Pages : 208

Get Book Here

Book Description
One of the series in Machine Perception and Artificial Intelligence, this book covers subjects including the Harvard binocular head; heads, eyes, and head-eye systems; a binocular robot head with torsional eye movements; and escape and dodging behaviours for reactive control.