Author: Robert B. Fisher
Publisher: John Wiley & Sons
ISBN: 1118706811
Category : Computers
Languages : en
Pages : 442
Book Description
Written by leading researchers, the 2nd Edition of the Dictionary of Computer Vision & Image Processing is a comprehensive and reliable resource which now provides explanations of over 3500 of the most commonly used terms across image processing, computer vision and related fields including machine vision. It offers clear and concise definitions with short examples or mathematical precision where necessary for clarity that ultimately makes it a very usable reference for new entrants to these fields at senior undergraduate and graduate level, through to early career researchers to help build up knowledge of key concepts. As the book is a useful source for recent terminology and concepts, experienced professionals will also find it a valuable resource for keeping up to date with the latest advances. New features of the 2nd Edition: Contains more than 1000 new terms, notably an increased focus on image processing and machine vision terms; Includes the addition of reference links across the majority of terms pointing readers to further information about the concept under discussion so that they can continue to expand their understanding; Now available as an eBook with enhanced content: approximately 50 videos to further illustrate specific terms; active cross-linking between terms so that readers can easily navigate from one related term to another and build up a full picture of the topic in question; and hyperlinked references to fully embed the text in the current literature.
Computer Vision
Author: Simon J. D. Prince
Publisher: Cambridge University Press
ISBN: 1107011795
Category : Computers
Languages : en
Pages : 599
Book Description
A modern treatment focusing on learning and inference, with minimal prerequisites, real-world examples and implementable algorithms.
Publisher: Cambridge University Press
ISBN: 1107011795
Category : Computers
Languages : en
Pages : 599
Book Description
A modern treatment focusing on learning and inference, with minimal prerequisites, real-world examples and implementable algorithms.
Computer Vision
Author: E. R. Davies
Publisher: Academic Press
ISBN: 012809575X
Category : Computers
Languages : en
Pages : 902
Book Description
Computer Vision: Principles, Algorithms, Applications, Learning (previously entitled Computer and Machine Vision) clearly and systematically presents the basic methodology of computer vision, covering the essential elements of the theory while emphasizing algorithmic and practical design constraints. This fully revised fifth edition has brought in more of the concepts and applications of computer vision, making it a very comprehensive and up-to-date text suitable for undergraduate and graduate students, researchers and R&D engineers working in this vibrant subject. See an interview with the author explaining his approach to teaching and learning computer vision - http://scitechconnect.elsevier.com/computer-vision/ - Three new chapters on Machine Learning emphasise the way the subject has been developing; Two chapters cover Basic Classification Concepts and Probabilistic Models; and the The third covers the principles of Deep Learning Networks and shows their impact on computer vision, reflected in a new chapter Face Detection and Recognition. - A new chapter on Object Segmentation and Shape Models reflects the methodology of machine learning and gives practical demonstrations of its application. - In-depth discussions have been included on geometric transformations, the EM algorithm, boosting, semantic segmentation, face frontalisation, RNNs and other key topics. - Examples and applications—including the location of biscuits, foreign bodies, faces, eyes, road lanes, surveillance, vehicles and pedestrians—give the 'ins and outs' of developing real-world vision systems, showing the realities of practical implementation. - Necessary mathematics and essential theory are made approachable by careful explanations and well-illustrated examples. - The 'recent developments' sections included in each chapter aim to bring students and practitioners up to date with this fast-moving subject. - Tailored programming examples—code, methods, illustrations, tasks, hints and solutions (mainly involving MATLAB and C++)
Publisher: Academic Press
ISBN: 012809575X
Category : Computers
Languages : en
Pages : 902
Book Description
Computer Vision: Principles, Algorithms, Applications, Learning (previously entitled Computer and Machine Vision) clearly and systematically presents the basic methodology of computer vision, covering the essential elements of the theory while emphasizing algorithmic and practical design constraints. This fully revised fifth edition has brought in more of the concepts and applications of computer vision, making it a very comprehensive and up-to-date text suitable for undergraduate and graduate students, researchers and R&D engineers working in this vibrant subject. See an interview with the author explaining his approach to teaching and learning computer vision - http://scitechconnect.elsevier.com/computer-vision/ - Three new chapters on Machine Learning emphasise the way the subject has been developing; Two chapters cover Basic Classification Concepts and Probabilistic Models; and the The third covers the principles of Deep Learning Networks and shows their impact on computer vision, reflected in a new chapter Face Detection and Recognition. - A new chapter on Object Segmentation and Shape Models reflects the methodology of machine learning and gives practical demonstrations of its application. - In-depth discussions have been included on geometric transformations, the EM algorithm, boosting, semantic segmentation, face frontalisation, RNNs and other key topics. - Examples and applications—including the location of biscuits, foreign bodies, faces, eyes, road lanes, surveillance, vehicles and pedestrians—give the 'ins and outs' of developing real-world vision systems, showing the realities of practical implementation. - Necessary mathematics and essential theory are made approachable by careful explanations and well-illustrated examples. - The 'recent developments' sections included in each chapter aim to bring students and practitioners up to date with this fast-moving subject. - Tailored programming examples—code, methods, illustrations, tasks, hints and solutions (mainly involving MATLAB and C++)
Computer Vision
Author: Zhihui Xiong
Publisher: BoD – Books on Demand
ISBN: 9537619214
Category : Computers
Languages : en
Pages : 550
Book Description
This book presents research trends on computer vision, especially on application of robotics, and on advanced approachs for computer vision (such as omnidirectional vision). Among them, research on RFID technology integrating stereo vision to localize an indoor mobile robot is included in this book. Besides, this book includes many research on omnidirectional vision, and the combination of omnidirectional vision with robotics. This book features representative work on the computer vision, and it puts more focus on robotics vision and omnidirectioal vision. The intended audience is anyone who wishes to become familiar with the latest research work on computer vision, especially its applications on robots. The contents of this book allow the reader to know more technical aspects and applications of computer vision. Researchers and instructors will benefit from this book.
Publisher: BoD – Books on Demand
ISBN: 9537619214
Category : Computers
Languages : en
Pages : 550
Book Description
This book presents research trends on computer vision, especially on application of robotics, and on advanced approachs for computer vision (such as omnidirectional vision). Among them, research on RFID technology integrating stereo vision to localize an indoor mobile robot is included in this book. Besides, this book includes many research on omnidirectional vision, and the combination of omnidirectional vision with robotics. This book features representative work on the computer vision, and it puts more focus on robotics vision and omnidirectioal vision. The intended audience is anyone who wishes to become familiar with the latest research work on computer vision, especially its applications on robots. The contents of this book allow the reader to know more technical aspects and applications of computer vision. Researchers and instructors will benefit from this book.
Computer Vision
Author: Linda G. Shapiro
Publisher: Pearson
ISBN:
Category : Biography & Autobiography
Languages : en
Pages : 628
Book Description
For upper level courses in Computer Vision and Image Analysis.Provides necessary theory and examples for students and practitioners who will work in fields where significant information must be extracted automatically from images. Appropriate for those interested in multimedia, art and design, geographic information systems, and image databases, in addition to the traditional areas of automation, image science, medical imaging, remote sensing and computer cartography. The text provides a basic set of fundamental concepts and algorithms for analyzing images, and discusses some of the exciting evolving application areas of computer vision.
Publisher: Pearson
ISBN:
Category : Biography & Autobiography
Languages : en
Pages : 628
Book Description
For upper level courses in Computer Vision and Image Analysis.Provides necessary theory and examples for students and practitioners who will work in fields where significant information must be extracted automatically from images. Appropriate for those interested in multimedia, art and design, geographic information systems, and image databases, in addition to the traditional areas of automation, image science, medical imaging, remote sensing and computer cartography. The text provides a basic set of fundamental concepts and algorithms for analyzing images, and discusses some of the exciting evolving application areas of computer vision.
Practical Machine Learning for Computer Vision
Author: Valliappa Lakshmanan
Publisher: "O'Reilly Media, Inc."
ISBN: 1098102339
Category : Computers
Languages : en
Pages : 481
Book Description
This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models
Publisher: "O'Reilly Media, Inc."
ISBN: 1098102339
Category : Computers
Languages : en
Pages : 481
Book Description
This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models
Three-dimensional Computer Vision
Author: Olivier Faugeras
Publisher: MIT Press
ISBN: 9780262061582
Category : Computers
Languages : en
Pages : 712
Book Description
This monograph by one of the world's leading vision researchers provides a thorough, mathematically rigorous exposition of a broad and vital area in computer vision: the problems and techniques related to three-dimensional (stereo) vision and motion. The emphasis is on using geometry to solve problems in stereo and motion, with examples from navigation and object recognition. Faugeras takes up such important problems in computer vision as projective geometry, camera calibration, edge detection, stereo vision (with many examples on real images), different kinds of representations and transformations (especially 3-D rotations), uncertainty and methods of addressing it, and object representation and recognition. His theoretical account is illustrated with the results of actual working programs.Three-Dimensional Computer Vision proposes solutions to problems arising from a specific robotics scenario in which a system must perceive and act. Moving about an unknown environment, the system has to avoid static and mobile obstacles, build models of objects and places in order to be able to recognize and locate them, and characterize its own motion and that of moving objects, by providing descriptions of the corresponding three-dimensional motions. The ideas generated, however, can be used indifferent settings, resulting in a general book on computer vision that reveals the fascinating relationship of three-dimensional geometry and the imaging process.
Publisher: MIT Press
ISBN: 9780262061582
Category : Computers
Languages : en
Pages : 712
Book Description
This monograph by one of the world's leading vision researchers provides a thorough, mathematically rigorous exposition of a broad and vital area in computer vision: the problems and techniques related to three-dimensional (stereo) vision and motion. The emphasis is on using geometry to solve problems in stereo and motion, with examples from navigation and object recognition. Faugeras takes up such important problems in computer vision as projective geometry, camera calibration, edge detection, stereo vision (with many examples on real images), different kinds of representations and transformations (especially 3-D rotations), uncertainty and methods of addressing it, and object representation and recognition. His theoretical account is illustrated with the results of actual working programs.Three-Dimensional Computer Vision proposes solutions to problems arising from a specific robotics scenario in which a system must perceive and act. Moving about an unknown environment, the system has to avoid static and mobile obstacles, build models of objects and places in order to be able to recognize and locate them, and characterize its own motion and that of moving objects, by providing descriptions of the corresponding three-dimensional motions. The ideas generated, however, can be used indifferent settings, resulting in a general book on computer vision that reveals the fascinating relationship of three-dimensional geometry and the imaging process.
Dictionary of Computer Vision and Image Processing
Author: Robert B. Fisher
Publisher: John Wiley & Sons
ISBN: 1118706811
Category : Computers
Languages : en
Pages : 442
Book Description
Written by leading researchers, the 2nd Edition of the Dictionary of Computer Vision & Image Processing is a comprehensive and reliable resource which now provides explanations of over 3500 of the most commonly used terms across image processing, computer vision and related fields including machine vision. It offers clear and concise definitions with short examples or mathematical precision where necessary for clarity that ultimately makes it a very usable reference for new entrants to these fields at senior undergraduate and graduate level, through to early career researchers to help build up knowledge of key concepts. As the book is a useful source for recent terminology and concepts, experienced professionals will also find it a valuable resource for keeping up to date with the latest advances. New features of the 2nd Edition: Contains more than 1000 new terms, notably an increased focus on image processing and machine vision terms; Includes the addition of reference links across the majority of terms pointing readers to further information about the concept under discussion so that they can continue to expand their understanding; Now available as an eBook with enhanced content: approximately 50 videos to further illustrate specific terms; active cross-linking between terms so that readers can easily navigate from one related term to another and build up a full picture of the topic in question; and hyperlinked references to fully embed the text in the current literature.
Publisher: John Wiley & Sons
ISBN: 1118706811
Category : Computers
Languages : en
Pages : 442
Book Description
Written by leading researchers, the 2nd Edition of the Dictionary of Computer Vision & Image Processing is a comprehensive and reliable resource which now provides explanations of over 3500 of the most commonly used terms across image processing, computer vision and related fields including machine vision. It offers clear and concise definitions with short examples or mathematical precision where necessary for clarity that ultimately makes it a very usable reference for new entrants to these fields at senior undergraduate and graduate level, through to early career researchers to help build up knowledge of key concepts. As the book is a useful source for recent terminology and concepts, experienced professionals will also find it a valuable resource for keeping up to date with the latest advances. New features of the 2nd Edition: Contains more than 1000 new terms, notably an increased focus on image processing and machine vision terms; Includes the addition of reference links across the majority of terms pointing readers to further information about the concept under discussion so that they can continue to expand their understanding; Now available as an eBook with enhanced content: approximately 50 videos to further illustrate specific terms; active cross-linking between terms so that readers can easily navigate from one related term to another and build up a full picture of the topic in question; and hyperlinked references to fully embed the text in the current literature.
Computer Vision
Author: Richard Szeliski
Publisher: Springer Science & Business Media
ISBN: 1848829353
Category : Computers
Languages : en
Pages : 824
Book Description
Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques. Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.
Publisher: Springer Science & Business Media
ISBN: 1848829353
Category : Computers
Languages : en
Pages : 824
Book Description
Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques. Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.
An Introduction to 3D Computer Vision Techniques and Algorithms
Author: Boguslaw Cyganek
Publisher: John Wiley & Sons
ISBN: 1119964474
Category : Science
Languages : en
Pages : 485
Book Description
Computer vision encompasses the construction of integrated vision systems and the application of vision to problems of real-world importance. The process of creating 3D models is still rather difficult, requiring mechanical measurement of the camera positions or manual alignment of partial 3D views of a scene. However using algorithms, it is possible to take a collection of stereo-pair images of a scene and then automatically produce a photo-realistic, geometrically accurate digital 3D model. This book provides a comprehensive introduction to the methods, theories and algorithms of 3D computer vision. Almost every theoretical issue is underpinned with practical implementation or a working algorithm using pseudo-code and complete code written in C++ and MatLab®. There is the additional clarification of an accompanying website with downloadable software, case studies and exercises. Organised in three parts, Cyganek and Siebert give a brief history of vision research, and subsequently: present basic low-level image processing operations for image matching, including a separate chapter on image matching algorithms; explain scale-space vision, as well as space reconstruction and multiview integration; demonstrate a variety of practical applications for 3D surface imaging and analysis; provide concise appendices on topics such as the basics of projective geometry and tensor calculus for image processing, distortion and noise in images plus image warping procedures. An Introduction to 3D Computer Vision Algorithms and Techniques is a valuable reference for practitioners and programmers working in 3D computer vision, image processing and analysis as well as computer visualisation. It would also be of interest to advanced students and researchers in the fields of engineering, computer science, clinical photography, robotics, graphics and mathematics.
Publisher: John Wiley & Sons
ISBN: 1119964474
Category : Science
Languages : en
Pages : 485
Book Description
Computer vision encompasses the construction of integrated vision systems and the application of vision to problems of real-world importance. The process of creating 3D models is still rather difficult, requiring mechanical measurement of the camera positions or manual alignment of partial 3D views of a scene. However using algorithms, it is possible to take a collection of stereo-pair images of a scene and then automatically produce a photo-realistic, geometrically accurate digital 3D model. This book provides a comprehensive introduction to the methods, theories and algorithms of 3D computer vision. Almost every theoretical issue is underpinned with practical implementation or a working algorithm using pseudo-code and complete code written in C++ and MatLab®. There is the additional clarification of an accompanying website with downloadable software, case studies and exercises. Organised in three parts, Cyganek and Siebert give a brief history of vision research, and subsequently: present basic low-level image processing operations for image matching, including a separate chapter on image matching algorithms; explain scale-space vision, as well as space reconstruction and multiview integration; demonstrate a variety of practical applications for 3D surface imaging and analysis; provide concise appendices on topics such as the basics of projective geometry and tensor calculus for image processing, distortion and noise in images plus image warping procedures. An Introduction to 3D Computer Vision Algorithms and Techniques is a valuable reference for practitioners and programmers working in 3D computer vision, image processing and analysis as well as computer visualisation. It would also be of interest to advanced students and researchers in the fields of engineering, computer science, clinical photography, robotics, graphics and mathematics.
Computer Vision and Internet of Things
Author: Lavanya Sharma
Publisher: CRC Press
ISBN: 100057055X
Category : Computers
Languages : en
Pages : 319
Book Description
Computer Vision and Internet of Things: Technologies and Applications explores the utilization of Internet of Things (IoT) with computer vision and its underlying technologies in different applications areas. Using a series of present and future applications – including business insights, indoor-outdoor securities, smart grids, human detection and tracking, intelligent traffic monitoring, e-health departments, and medical imaging – this book focuses on providing a detailed description of the utilization of IoT with computer vision and its underlying technologies in critical application areas, such as smart grids, emergency departments, intelligent traffic cams, insurance, and the automotive industry. Key Features • Covers the challenging issues related to sensors, detection, and tracking of moving objects with solutions to handle relevant challenges • Describes the latest technological advances in IoT and computer vision with their implementations • Combines image processing and analysis into a unified framework to understand both IOT and computer vision applications • Explores mining and tracking of motion-based object data, such as trajectory prediction and prediction of a particular location of object data, and their critical applications • Provides novel solutions for medical imaging (skin lesion detection, cancer detection, enhancement techniques for MRI images, and automated disease prediction) This book is primarily aimed at graduates and researchers working in the areas of IoT, computer vision, big data, cloud computing, and remote sensing. It is also an ideal resource for IT professionals and technology developers.
Publisher: CRC Press
ISBN: 100057055X
Category : Computers
Languages : en
Pages : 319
Book Description
Computer Vision and Internet of Things: Technologies and Applications explores the utilization of Internet of Things (IoT) with computer vision and its underlying technologies in different applications areas. Using a series of present and future applications – including business insights, indoor-outdoor securities, smart grids, human detection and tracking, intelligent traffic monitoring, e-health departments, and medical imaging – this book focuses on providing a detailed description of the utilization of IoT with computer vision and its underlying technologies in critical application areas, such as smart grids, emergency departments, intelligent traffic cams, insurance, and the automotive industry. Key Features • Covers the challenging issues related to sensors, detection, and tracking of moving objects with solutions to handle relevant challenges • Describes the latest technological advances in IoT and computer vision with their implementations • Combines image processing and analysis into a unified framework to understand both IOT and computer vision applications • Explores mining and tracking of motion-based object data, such as trajectory prediction and prediction of a particular location of object data, and their critical applications • Provides novel solutions for medical imaging (skin lesion detection, cancer detection, enhancement techniques for MRI images, and automated disease prediction) This book is primarily aimed at graduates and researchers working in the areas of IoT, computer vision, big data, cloud computing, and remote sensing. It is also an ideal resource for IT professionals and technology developers.