Author: Gianni Jacucci
Publisher: Springer Science & Business Media
ISBN: 9789027721921
Category : Computers
Languages : en
Pages : 330
Book Description
Computer Simulation in Physical Metallurgy
Author: Gianni Jacucci
Publisher: Springer Science & Business Media
ISBN: 9789027721921
Category : Computers
Languages : en
Pages : 330
Book Description
Publisher: Springer Science & Business Media
ISBN: 9789027721921
Category : Computers
Languages : en
Pages : 330
Book Description
Continuum Scale Simulation of Engineering Materials
Author: Dierk Raabe
Publisher: John Wiley & Sons
ISBN: 3527604219
Category : Technology & Engineering
Languages : en
Pages : 885
Book Description
This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.
Publisher: John Wiley & Sons
ISBN: 3527604219
Category : Technology & Engineering
Languages : en
Pages : 885
Book Description
This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.
Computer Simulation in Physical Metallurgy
Author: Gianni Jacucci
Publisher: Springer
ISBN: 9789027721921
Category : Computers
Languages : en
Pages : 0
Book Description
Publisher: Springer
ISBN: 9789027721921
Category : Computers
Languages : en
Pages : 0
Book Description
Physical Metallurgy of High Manganese Steels
Author: Wolfgang Bleck
Publisher: MDPI
ISBN: 3039218565
Category : Technology & Engineering
Languages : en
Pages : 212
Book Description
The Special Issue ‘Physical Metallurgy of High Manganese Steels’ addresses the highly fascinating class of manganese-alloyed steels with manganese contents well above 3 mass%. The book gathers manuscripts from internationally recognized researchers with stimulating new ideas and original results. It consists of fifteen original research papers. Seven contributions focus on steels with manganese contents above 12 mass%. These contributions cover fundamental aspects of process-microstrcuture-properties relationships with processes ranging from cold and warm rolling over deep rolling to heat treatment. Novel findings regarding the fatigue and fracture behavior, deformation mechanisms, and computer-aided design are presented. Additionally, the Special Issue also reflects the current trend of reduced Mn content (3-12 mass%) in advanced high strength steels (AHSS). Eight contributions were dedicated to these alloys, which are often referred to as 3rd generation AHSS, medium manganese steels or quenching and partitioning (Q&P/Q+P) steels. The interplay between advanced processing, mainly novel annealing variants, and microstructure evolution has been addressed using computational and experimental approaches. A deeper understanding of strain-rate sensitivity, hydrogen embrittlement, phase transformations, and the consequences for the materials’ properties has been developed. Hence, the topics included are manifold, fundamental-science oriented and, at the same time, relevant to industrial application.
Publisher: MDPI
ISBN: 3039218565
Category : Technology & Engineering
Languages : en
Pages : 212
Book Description
The Special Issue ‘Physical Metallurgy of High Manganese Steels’ addresses the highly fascinating class of manganese-alloyed steels with manganese contents well above 3 mass%. The book gathers manuscripts from internationally recognized researchers with stimulating new ideas and original results. It consists of fifteen original research papers. Seven contributions focus on steels with manganese contents above 12 mass%. These contributions cover fundamental aspects of process-microstrcuture-properties relationships with processes ranging from cold and warm rolling over deep rolling to heat treatment. Novel findings regarding the fatigue and fracture behavior, deformation mechanisms, and computer-aided design are presented. Additionally, the Special Issue also reflects the current trend of reduced Mn content (3-12 mass%) in advanced high strength steels (AHSS). Eight contributions were dedicated to these alloys, which are often referred to as 3rd generation AHSS, medium manganese steels or quenching and partitioning (Q&P/Q+P) steels. The interplay between advanced processing, mainly novel annealing variants, and microstructure evolution has been addressed using computational and experimental approaches. A deeper understanding of strain-rate sensitivity, hydrogen embrittlement, phase transformations, and the consequences for the materials’ properties has been developed. Hence, the topics included are manifold, fundamental-science oriented and, at the same time, relevant to industrial application.
Physical Metallurgy of Direct Chill Casting of Aluminum Alloys
Author: Dmitry G. Eskin
Publisher: CRC Press
ISBN: 1420062824
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
Pulling together information previously scattered throughout numerous research articles into one detailed resource, this book connects the fundamentals of structure formation during solidification with the practically observed structure and defect patterns in billets and ingots. The author examines the formation of a structure, properties, and defects in the as-cast material in tight correlation to the physical phenomena involved in the solidification and the process parameters. Compiling recent results and data, the book discusses the fundamentals of solidification together with metallurgical and technological aspects of DC casting. It gives new insight and perspective into DC casting research.
Publisher: CRC Press
ISBN: 1420062824
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
Pulling together information previously scattered throughout numerous research articles into one detailed resource, this book connects the fundamentals of structure formation during solidification with the practically observed structure and defect patterns in billets and ingots. The author examines the formation of a structure, properties, and defects in the as-cast material in tight correlation to the physical phenomena involved in the solidification and the process parameters. Compiling recent results and data, the book discusses the fundamentals of solidification together with metallurgical and technological aspects of DC casting. It gives new insight and perspective into DC casting research.
Multiscale Modeling and Analysis for Materials Simulation
Author: Weizhu Bao
Publisher: World Scientific
ISBN: 9814360902
Category : Mathematics
Languages : en
Pages : 285
Book Description
The Institute for Mathematical Sciences at the National University of Singapore hosted a two-month research program on OC Mathematical Theory and Numerical Methods for Computational Materials Simulation and DesignOCO from 1 July to 31 August 2009. As an important part of the program, tutorials and special lectures were given by leading experts in the fields for participating graduate students and junior researchers. This invaluable volume collects four expanded lecture notes with self-contained tutorials. They cover a number of aspects on multiscale modeling, analysis and simulations for problems arising from materials science including some critical components in computational prediction of materials properties such as the multiscale properties of complex materials, properties of defects, interfaces and material microstructures under different conditions, critical issues in developing efficient numerical methods and analytic frameworks for complex and multiscale materials models. This volume serves to inspire graduate students and researchers who choose to embark into original research work in these fields.
Publisher: World Scientific
ISBN: 9814360902
Category : Mathematics
Languages : en
Pages : 285
Book Description
The Institute for Mathematical Sciences at the National University of Singapore hosted a two-month research program on OC Mathematical Theory and Numerical Methods for Computational Materials Simulation and DesignOCO from 1 July to 31 August 2009. As an important part of the program, tutorials and special lectures were given by leading experts in the fields for participating graduate students and junior researchers. This invaluable volume collects four expanded lecture notes with self-contained tutorials. They cover a number of aspects on multiscale modeling, analysis and simulations for problems arising from materials science including some critical components in computational prediction of materials properties such as the multiscale properties of complex materials, properties of defects, interfaces and material microstructures under different conditions, critical issues in developing efficient numerical methods and analytic frameworks for complex and multiscale materials models. This volume serves to inspire graduate students and researchers who choose to embark into original research work in these fields.
Trends In Welding Research
Author: Stan A. David
Publisher: ASM International
ISBN: 1615031081
Category : Technology & Engineering
Languages : en
Pages : 1015
Book Description
Publisher: ASM International
ISBN: 1615031081
Category : Technology & Engineering
Languages : en
Pages : 1015
Book Description
Chemistry and Physics of Fracture
Author: R.M. Latanision
Publisher: Springer Science & Business Media
ISBN: 9400936656
Category : Technology & Engineering
Languages : en
Pages : 726
Book Description
For many years it has been recognized that engineering materials that are-tough and ductile can be rendered susceptible to premature fracture through their reaction with the environment. Over 100 years ago, Reynolds associated hydrogen with detrimental effects on the ductility of iron. The "season cracking" of brass has been a known problem for dec ades, but the mechanisms for this stress-corrosion process are only today being elucidated. In more recent times, the mechanical properties of most engineering materials have been shown to be adversely affected by hydrogen embrittlement or stress-corrosion cracking. Early studies of environmental effects on crack growth attempted to identify a unified theory to explain the crack growth behavior of groups of materials in a variety of environments. It is currently understood that there are numerous stress-corrosion processes some of which may be common to several materials, but that the crack growth behavior of a given material is dependent on microstructure, microchemistry, mechanics, surface chemistry, and solution chemistry. Although the mechanism by which various chemical species in the environment may cause cracks to propagate in some materials but not in others is very complex, the net result of all environmentally induced fracture is the reduction in the force and energy associated with the tensile or shear separation of atoms at the crack tip.
Publisher: Springer Science & Business Media
ISBN: 9400936656
Category : Technology & Engineering
Languages : en
Pages : 726
Book Description
For many years it has been recognized that engineering materials that are-tough and ductile can be rendered susceptible to premature fracture through their reaction with the environment. Over 100 years ago, Reynolds associated hydrogen with detrimental effects on the ductility of iron. The "season cracking" of brass has been a known problem for dec ades, but the mechanisms for this stress-corrosion process are only today being elucidated. In more recent times, the mechanical properties of most engineering materials have been shown to be adversely affected by hydrogen embrittlement or stress-corrosion cracking. Early studies of environmental effects on crack growth attempted to identify a unified theory to explain the crack growth behavior of groups of materials in a variety of environments. It is currently understood that there are numerous stress-corrosion processes some of which may be common to several materials, but that the crack growth behavior of a given material is dependent on microstructure, microchemistry, mechanics, surface chemistry, and solution chemistry. Although the mechanism by which various chemical species in the environment may cause cracks to propagate in some materials but not in others is very complex, the net result of all environmentally induced fracture is the reduction in the force and energy associated with the tensile or shear separation of atoms at the crack tip.
Interatomic Bonding in Solids
Author: Valim Levitin
Publisher: John Wiley & Sons
ISBN: 3527671579
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
The connection between the quantum behavior of the structure elements of a substance and the parameters that determine the macroscopic behavior of materials has a major influence on the properties exhibited by different solids. Although quantum engineering and theory should complement each other, this is not always the case. This book aims to demonstrate how the properties of materials can be derived and predicted from the features of their structural elements, generally electrons. In a sense, electronic structure forms the glue holding solids together and it is central to determining structural, mechanical, chemical, electrical, magnetic, and vibrational properties. The main part of the book is devoted to an overview of the fundamentals of density functional theory and its applications to computational solid-state physics and chemistry. The author shows the technique for construction of models and the computer simulation methods in detail. He considers fundamentals of physical and chemical interatomic bonding in solids and analyzes the predicted theoretical outcome in comparison with experimental data. He applies first-principle simulation methods to predict the properties of transition metals, semiconductors, oxides, solid solutions, and molecular and ionic crystals. Uniquely, he presents novel theories of creep and fatigue that help to anticipate, and prevent, possibly fatal material failures. As a result, readers gain the knowledge and tools to simulate material properties and design materials with desired characteristics. Due to the interdisciplinary nature of the book, it is suitable for a variety of markets from students to engineers and researchers.
Publisher: John Wiley & Sons
ISBN: 3527671579
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
The connection between the quantum behavior of the structure elements of a substance and the parameters that determine the macroscopic behavior of materials has a major influence on the properties exhibited by different solids. Although quantum engineering and theory should complement each other, this is not always the case. This book aims to demonstrate how the properties of materials can be derived and predicted from the features of their structural elements, generally electrons. In a sense, electronic structure forms the glue holding solids together and it is central to determining structural, mechanical, chemical, electrical, magnetic, and vibrational properties. The main part of the book is devoted to an overview of the fundamentals of density functional theory and its applications to computational solid-state physics and chemistry. The author shows the technique for construction of models and the computer simulation methods in detail. He considers fundamentals of physical and chemical interatomic bonding in solids and analyzes the predicted theoretical outcome in comparison with experimental data. He applies first-principle simulation methods to predict the properties of transition metals, semiconductors, oxides, solid solutions, and molecular and ionic crystals. Uniquely, he presents novel theories of creep and fatigue that help to anticipate, and prevent, possibly fatal material failures. As a result, readers gain the knowledge and tools to simulate material properties and design materials with desired characteristics. Due to the interdisciplinary nature of the book, it is suitable for a variety of markets from students to engineers and researchers.
Computer, Intelligent Computing and Education Technology
Author: Hsiang-Chuan Liu
Publisher: CRC Press
ISBN: 1138024694
Category : Computers
Languages : en
Pages : 1488
Book Description
This proceedings set contains selected Computer, Information and Education Technology related papers from the 2014 International Conference on Computer, Intelligent Computing and Education Technology (CICET 2014), held March 27-28, 2014 in Hong Kong. The proceedings aims to provide a platform for researchers, engineers and academics as well as industry professionals from all over the world to present their research results and development activities in Computer Science, Information Technology and Education Technology.
Publisher: CRC Press
ISBN: 1138024694
Category : Computers
Languages : en
Pages : 1488
Book Description
This proceedings set contains selected Computer, Information and Education Technology related papers from the 2014 International Conference on Computer, Intelligent Computing and Education Technology (CICET 2014), held March 27-28, 2014 in Hong Kong. The proceedings aims to provide a platform for researchers, engineers and academics as well as industry professionals from all over the world to present their research results and development activities in Computer Science, Information Technology and Education Technology.