Computer Modelling in Tomography and Ill-Posed Problems

Computer Modelling in Tomography and Ill-Posed Problems PDF Author: Mikhail M. Lavrent'ev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110940930
Category : Mathematics
Languages : en
Pages : 136

Get Book Here

Book Description
Comparatively weakly researched untraditional tomography problems are solved because of new achievements in calculation mathematics and the theory of ill-posed problems, the regularization process of solving ill-posed problems, and the increase of stability. Experiments show possibilities and applicability of algorithms of processing tomography data. This monograph is devoted to considering these problems in connection with series of ill-posed problems in tomography settings arising from practice.The book includes chapters to the following themes: Mathematical basis of the method of computerized tomography Cone-beam tomography reconstruction Inverse kinematic problem in the tomographic setting

Computer Modelling in Tomography and Ill-Posed Problems

Computer Modelling in Tomography and Ill-Posed Problems PDF Author: Mikhail M. Lavrent'ev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110940930
Category : Mathematics
Languages : en
Pages : 136

Get Book Here

Book Description
Comparatively weakly researched untraditional tomography problems are solved because of new achievements in calculation mathematics and the theory of ill-posed problems, the regularization process of solving ill-posed problems, and the increase of stability. Experiments show possibilities and applicability of algorithms of processing tomography data. This monograph is devoted to considering these problems in connection with series of ill-posed problems in tomography settings arising from practice.The book includes chapters to the following themes: Mathematical basis of the method of computerized tomography Cone-beam tomography reconstruction Inverse kinematic problem in the tomographic setting

Well-posed, Ill-posed, and Intermediate Problems with Applications

Well-posed, Ill-posed, and Intermediate Problems with Applications PDF Author: Petrov Yuri P.
Publisher: Walter de Gruyter
ISBN: 3110195305
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
This book deals with one of the key problems in applied mathematics, namely the investigation into and providing for solution stability in solving equations with due allowance for inaccuracies in set initial data, parameters and coefficients of a mathematical model for an object under study, instrumental function, initial conditions, etc., and also with allowance for miscalculations, including roundoff errors. Until recently, all problems in mathematics, physics and engineering were divided into two classes: well-posed problems and ill-posed problems. The authors introduce a third class of problems: intermediate ones, which are problems that change their property of being well- or ill-posed on equivalent transformations of governing equations, and also problems that display the property of being either well- or ill-posed depending on the type of the functional space used. The book is divided into two parts: Part one deals with general properties of all three classes of mathematical, physical and engineering problems with approaches to solve them; Part two deals with several stable models for solving inverse ill-posed problems, illustrated with numerical examples.

Operator Theory and Ill-Posed Problems

Operator Theory and Ill-Posed Problems PDF Author: Mikhail M. Lavrent'ev
Publisher: Walter de Gruyter
ISBN: 3110960729
Category : Mathematics
Languages : en
Pages : 697

Get Book Here

Book Description
This book consists of three major parts. The first two parts deal with general mathematical concepts and certain areas of operator theory. The third part is devoted to ill-posed problems. It can be read independently of the first two parts and presents a good example of applying the methods of calculus and functional analysis. The first part "Basic Concepts" briefly introduces the language of set theory and concepts of abstract, linear and multilinear algebra. Also introduced are the language of topology and fundamental concepts of calculus: the limit, the differential, and the integral. A special section is devoted to analysis on manifolds. The second part "Operators" describes the most important function spaces and operator classes for both linear and nonlinear operators. Different kinds of generalized functions and their transformations are considered. Elements of the theory of linear operators are presented. Spectral theory is given a special focus. The third part "Ill-Posed Problems" is devoted to problems of mathematical physics, integral and operator equations, evolution equations and problems of integral geometry. It also deals with problems of analytic continuation. Detailed coverage of the subjects and numerous examples and exercises make it possible to use the book as a textbook on some areas of calculus and functional analysis. It can also be used as a reference textbook because of the extensive scope and detailed references with comments.

Ill-Posed and Non-Classical Problems of Mathematical Physics and Analysis

Ill-Posed and Non-Classical Problems of Mathematical Physics and Analysis PDF Author: Mikhail M. Lavrent'ev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110936526
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
These proceedings of the international Conference "Ill-Posed and Non-Classical Problems of Mathematical Physics and Analysis", held at the Samarkand State University, Uzbekistan in September 2000 bring together fundamental research articles in the major areas of the numerated fields of analysis and mathematical physics. The book covers the following topics: theory of ill-posed problems inverse problems for differential equations boundary value problems for equations of mixed type integral geometry mathematical modelling and numerical methods in natural sciences

Ill-Posed Boundary-Value Problems

Ill-Posed Boundary-Value Problems PDF Author: Serikkali E. Temirbolat
Publisher: Walter de Gruyter
ISBN: 3110915510
Category : Mathematics
Languages : en
Pages : 152

Get Book Here

Book Description
This monograph extends well-known facts to new classes of problems and works out novel approaches to the solution of these problems. It is devoted to the questions of ill-posed boundary-value problems for systems of various types of the first-order differential equations with constant coefficients and the methods for their solution.

Counterexamples in Optimal Control Theory

Counterexamples in Optimal Control Theory PDF Author: Semen Ya. Serovaiskii
Publisher: Walter de Gruyter
ISBN: 3110915537
Category : Mathematics
Languages : en
Pages : 185

Get Book Here

Book Description
This monograph deals with cases where optimal control either does not exist or is not unique, cases where optimality conditions are insufficient of degenerate, or where extremum problems in the sense of Tikhonov and Hadamard are ill-posed, and other situations. A formal application of classical optimisation methods in such cases either leads to wrong results or has no effect. The detailed analysis of these examples should provide a better understanding of the modern theory of optimal control and the practical difficulties of solving extremum problems.

Nonclassical Linear Volterra Equations of the First Kind

Nonclassical Linear Volterra Equations of the First Kind PDF Author: Anatoly S. Apartsyn
Publisher: Walter de Gruyter
ISBN: 3110944979
Category : Mathematics
Languages : en
Pages : 177

Get Book Here

Book Description
This monograph deals with linear integra Volterra equations of the first kind with variable upper and lower limits of integration. Volterra operators of this type are the basic operators for integral models of dynamic systems.

Poorly Visible Media in X-Ray Tomography

Poorly Visible Media in X-Ray Tomography PDF Author: V. G. Nazarov
Publisher: VSP
ISBN: 9789067643740
Category : Science
Languages : en
Pages : 312

Get Book Here

Book Description
The tomography problem considered in this volume of the Inverse and Ill-Posed Problems Series consists of finding an essential part of information about the internal structure of an unknown medium. More particularly, the contact boundaries between various materials in the medium are sought. This investigation is implemented by studying an appropriate mathematical model, which is represented as a transport equation (linear Boltzmann's equation) together with certain boundary conditions. Both theoretical and numerical methods have been used and the results consist of proved theorems, computer testing of the corresponding algorithms, together with a number of tables. This book may be considered as a continuation and application of Transport Equation and Tomography by D.S. Anikonov, A.E. Kovtanyuk and I.V. Prokhorov, previously published in this series.

Carleman Estimates for Coefficient Inverse Problems and Numerical Applications

Carleman Estimates for Coefficient Inverse Problems and Numerical Applications PDF Author: Michael V. Klibanov
Publisher: Walter de Gruyter
ISBN: 3110915545
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
In this monograph, the main subject of the author's considerations is coefficient inverse problems. Arising in many areas of natural sciences and technology, such problems consist of determining the variable coefficients of a certain differential operator defined in a domain from boundary measurements of a solution or its functionals. Although the authors pay strong attention to the rigorous justification of known results, they place the primary emphasis on new concepts and developments.

Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging PDF Author: Otmar Scherzer
Publisher: Springer Science & Business Media
ISBN: 0387929193
Category : Mathematics
Languages : en
Pages : 1626

Get Book Here

Book Description
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.