Author: Ayush Bhandari
Publisher: MIT Press
ISBN: 0262046474
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
A comprehensive and up-to-date textbook and reference for computational imaging, which combines vision, graphics, signal processing, and optics. Computational imaging involves the joint design of imaging hardware and computer algorithms to create novel imaging systems with unprecedented capabilities. In recent years such capabilities include cameras that operate at a trillion frames per second, microscopes that can see small viruses long thought to be optically irresolvable, and telescopes that capture images of black holes. This text offers a comprehensive and up-to-date introduction to this rapidly growing field, a convergence of vision, graphics, signal processing, and optics. It can be used as an instructional resource for computer imaging courses and as a reference for professionals. It covers the fundamentals of the field, current research and applications, and light transport techniques. The text first presents an imaging toolkit, including optics, image sensors, and illumination, and a computational toolkit, introducing modeling, mathematical tools, model-based inversion, data-driven inversion techniques, and hybrid inversion techniques. It then examines different modalities of light, focusing on the plenoptic function, which describes degrees of freedom of a light ray. Finally, the text outlines light transport techniques, describing imaging systems that obtain micron-scale 3D shape or optimize for noise-free imaging, optical computing, and non-line-of-sight imaging. Throughout, it discusses the use of computational imaging methods in a range of application areas, including smart phone photography, autonomous driving, and medical imaging. End-of-chapter exercises help put the material in context.
Computational Imaging
Author: Ayush Bhandari
Publisher: MIT Press
ISBN: 0262046474
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
A comprehensive and up-to-date textbook and reference for computational imaging, which combines vision, graphics, signal processing, and optics. Computational imaging involves the joint design of imaging hardware and computer algorithms to create novel imaging systems with unprecedented capabilities. In recent years such capabilities include cameras that operate at a trillion frames per second, microscopes that can see small viruses long thought to be optically irresolvable, and telescopes that capture images of black holes. This text offers a comprehensive and up-to-date introduction to this rapidly growing field, a convergence of vision, graphics, signal processing, and optics. It can be used as an instructional resource for computer imaging courses and as a reference for professionals. It covers the fundamentals of the field, current research and applications, and light transport techniques. The text first presents an imaging toolkit, including optics, image sensors, and illumination, and a computational toolkit, introducing modeling, mathematical tools, model-based inversion, data-driven inversion techniques, and hybrid inversion techniques. It then examines different modalities of light, focusing on the plenoptic function, which describes degrees of freedom of a light ray. Finally, the text outlines light transport techniques, describing imaging systems that obtain micron-scale 3D shape or optimize for noise-free imaging, optical computing, and non-line-of-sight imaging. Throughout, it discusses the use of computational imaging methods in a range of application areas, including smart phone photography, autonomous driving, and medical imaging. End-of-chapter exercises help put the material in context.
Publisher: MIT Press
ISBN: 0262046474
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
A comprehensive and up-to-date textbook and reference for computational imaging, which combines vision, graphics, signal processing, and optics. Computational imaging involves the joint design of imaging hardware and computer algorithms to create novel imaging systems with unprecedented capabilities. In recent years such capabilities include cameras that operate at a trillion frames per second, microscopes that can see small viruses long thought to be optically irresolvable, and telescopes that capture images of black holes. This text offers a comprehensive and up-to-date introduction to this rapidly growing field, a convergence of vision, graphics, signal processing, and optics. It can be used as an instructional resource for computer imaging courses and as a reference for professionals. It covers the fundamentals of the field, current research and applications, and light transport techniques. The text first presents an imaging toolkit, including optics, image sensors, and illumination, and a computational toolkit, introducing modeling, mathematical tools, model-based inversion, data-driven inversion techniques, and hybrid inversion techniques. It then examines different modalities of light, focusing on the plenoptic function, which describes degrees of freedom of a light ray. Finally, the text outlines light transport techniques, describing imaging systems that obtain micron-scale 3D shape or optimize for noise-free imaging, optical computing, and non-line-of-sight imaging. Throughout, it discusses the use of computational imaging methods in a range of application areas, including smart phone photography, autonomous driving, and medical imaging. End-of-chapter exercises help put the material in context.
Perceptual Digital Imaging
Author: Rastislav Lukac
Publisher: CRC Press
ISBN: 1351832891
Category : Computers
Languages : en
Pages : 564
Book Description
Visual perception is a complex process requiring interaction between the receptors in the eye that sense the stimulus and the neural system and the brain that are responsible for communicating and interpreting the sensed visual information. This process involves several physical, neural, and cognitive phenomena whose understanding is essential to design effective and computationally efficient imaging solutions. Building on advances in computer vision, image and video processing, neuroscience, and information engineering, perceptual digital imaging greatly enhances the capabilities of traditional imaging methods. Filling a gap in the literature, Perceptual Digital Imaging: Methods and Applications comprehensively covers the system design, implementation, and application aspects of this emerging specialized area. It gives readers a strong, fundamental understanding of theory and methods, providing a foundation on which solutions for many of the most interesting and challenging imaging problems can be built. The book features contributions by renowned experts who present the state of the art and recent trends in image acquisition, processing, storage, display, and visual quality evaluation. They detail advances in the field and explore human visual system-driven approaches across a broad spectrum of applications, including: Image quality and aesthetics assessment Digital camera imaging White balancing and color enhancement Thumbnail generation Image restoration Super-resolution imaging Digital halftoning and dithering Color feature extraction Semantic multimedia analysis and processing Video shot characterization Image and video encryption Display quality enhancement This is a valuable resource for readers who want to design and implement more effective solutions for cutting-edge digital imaging, computer vision, and multimedia applications. Suitable as a graduate-level textbook or stand-alone reference for researchers and practitioners, it provides a unique overview of an important and rapidly developing research field.
Publisher: CRC Press
ISBN: 1351832891
Category : Computers
Languages : en
Pages : 564
Book Description
Visual perception is a complex process requiring interaction between the receptors in the eye that sense the stimulus and the neural system and the brain that are responsible for communicating and interpreting the sensed visual information. This process involves several physical, neural, and cognitive phenomena whose understanding is essential to design effective and computationally efficient imaging solutions. Building on advances in computer vision, image and video processing, neuroscience, and information engineering, perceptual digital imaging greatly enhances the capabilities of traditional imaging methods. Filling a gap in the literature, Perceptual Digital Imaging: Methods and Applications comprehensively covers the system design, implementation, and application aspects of this emerging specialized area. It gives readers a strong, fundamental understanding of theory and methods, providing a foundation on which solutions for many of the most interesting and challenging imaging problems can be built. The book features contributions by renowned experts who present the state of the art and recent trends in image acquisition, processing, storage, display, and visual quality evaluation. They detail advances in the field and explore human visual system-driven approaches across a broad spectrum of applications, including: Image quality and aesthetics assessment Digital camera imaging White balancing and color enhancement Thumbnail generation Image restoration Super-resolution imaging Digital halftoning and dithering Color feature extraction Semantic multimedia analysis and processing Video shot characterization Image and video encryption Display quality enhancement This is a valuable resource for readers who want to design and implement more effective solutions for cutting-edge digital imaging, computer vision, and multimedia applications. Suitable as a graduate-level textbook or stand-alone reference for researchers and practitioners, it provides a unique overview of an important and rapidly developing research field.
Solutions Manual for Computer Imaging
Author: Umbaugh ScottE
Publisher: CRC Press
ISBN: 9780849339493
Category :
Languages : en
Pages : 164
Book Description
Publisher: CRC Press
ISBN: 9780849339493
Category :
Languages : en
Pages : 164
Book Description
Handbook of Medical Image Computing and Computer Assisted Intervention
Author: S. Kevin Zhou
Publisher: Academic Press
ISBN: 0128165863
Category : Computers
Languages : en
Pages : 1074
Book Description
Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention. - Presents the key research challenges in medical image computing and computer-assisted intervention - Written by leading authorities of the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society - Contains state-of-the-art technical approaches to key challenges - Demonstrates proven algorithms for a whole range of essential medical imaging applications - Includes source codes for use in a plug-and-play manner - Embraces future directions in the fields of medical image computing and computer-assisted intervention
Publisher: Academic Press
ISBN: 0128165863
Category : Computers
Languages : en
Pages : 1074
Book Description
Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention. - Presents the key research challenges in medical image computing and computer-assisted intervention - Written by leading authorities of the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society - Contains state-of-the-art technical approaches to key challenges - Demonstrates proven algorithms for a whole range of essential medical imaging applications - Includes source codes for use in a plug-and-play manner - Embraces future directions in the fields of medical image computing and computer-assisted intervention
Image Restoration
Author: Bahadir Kursat Gunturk
Publisher: CRC Press
ISBN: 1439869561
Category : Computers
Languages : en
Pages : 377
Book Description
Image Restoration: Fundamentals and Advances responds to the need to update most existing references on the subject, many of which were published decades ago. Providing a broad overview of image restoration, this book explores breakthroughs in related algorithm development and their role in supporting real-world applications associated with various scientific and engineering fields. These include astronomical imaging, photo editing, and medical imaging, to name just a few. The book examines how such advances can also lead to novel insights into the fundamental properties of image sources. Addressing the many advances in imaging, computing, and communications technologies, this reference strikes just the right balance of coverage between core fundamental principles and the latest developments in this area. Its content was designed based on the idea that the reproducibility of published works on algorithms makes it easier for researchers to build on each other’s work, which often benefits the vitality of the technical community as a whole. For that reason, this book is as experimentally reproducible as possible. Topics covered include: Image denoising and deblurring Different image restoration methods and recent advances such as nonlocality and sparsity Blind restoration under space-varying blur Super-resolution restoration Learning-based methods Multi-spectral and color image restoration New possibilities using hybrid imaging systems Many existing references are scattered throughout the literature, and there is a significant gap between the cutting edge in image restoration and what we can learn from standard image processing textbooks. To fill that need but avoid a rehash of the many fine existing books on this subject, this reference focuses on algorithms rather than theories or applications. Giving readers access to a large amount of downloadable source code, the book illustrates fundamental techniques, key ideas developed over the years, and the state of the art in image restoration. It is a valuable resource for readers at all levels of understanding.
Publisher: CRC Press
ISBN: 1439869561
Category : Computers
Languages : en
Pages : 377
Book Description
Image Restoration: Fundamentals and Advances responds to the need to update most existing references on the subject, many of which were published decades ago. Providing a broad overview of image restoration, this book explores breakthroughs in related algorithm development and their role in supporting real-world applications associated with various scientific and engineering fields. These include astronomical imaging, photo editing, and medical imaging, to name just a few. The book examines how such advances can also lead to novel insights into the fundamental properties of image sources. Addressing the many advances in imaging, computing, and communications technologies, this reference strikes just the right balance of coverage between core fundamental principles and the latest developments in this area. Its content was designed based on the idea that the reproducibility of published works on algorithms makes it easier for researchers to build on each other’s work, which often benefits the vitality of the technical community as a whole. For that reason, this book is as experimentally reproducible as possible. Topics covered include: Image denoising and deblurring Different image restoration methods and recent advances such as nonlocality and sparsity Blind restoration under space-varying blur Super-resolution restoration Learning-based methods Multi-spectral and color image restoration New possibilities using hybrid imaging systems Many existing references are scattered throughout the literature, and there is a significant gap between the cutting edge in image restoration and what we can learn from standard image processing textbooks. To fill that need but avoid a rehash of the many fine existing books on this subject, this reference focuses on algorithms rather than theories or applications. Giving readers access to a large amount of downloadable source code, the book illustrates fundamental techniques, key ideas developed over the years, and the state of the art in image restoration. It is a valuable resource for readers at all levels of understanding.
Medical Imaging Systems
Author: Andreas Maier
Publisher: Springer
ISBN: 3319965204
Category : Computers
Languages : en
Pages : 263
Book Description
This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.
Publisher: Springer
ISBN: 3319965204
Category : Computers
Languages : en
Pages : 263
Book Description
This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.
Principles of Computerized Tomographic Imaging
Author: Avinash C. Kak
Publisher: SIAM
ISBN: 089871494X
Category : Mathematics
Languages : en
Pages : 335
Book Description
A comprehensive, tutorial-style introduction to the algorithms necessary for tomographic imaging.
Publisher: SIAM
ISBN: 089871494X
Category : Mathematics
Languages : en
Pages : 335
Book Description
A comprehensive, tutorial-style introduction to the algorithms necessary for tomographic imaging.
Advances in Computerized Analysis in Clinical and Medical Imaging
Author: J Dinesh Peter
Publisher: CRC Press
ISBN: 0429820496
Category : Computers
Languages : en
Pages : 264
Book Description
Advances in Computerized Analysis in Clinical and Medical Imaging book is devoted for spreading of knowledge through the publication of scholarly research, primarily in the fields of clinical & medical imaging. The types of chapters consented include those that cover the development and implementation of algorithms and strategies based on the use of geometrical, statistical, physical, functional to solve the following types of problems, using medical image datasets: visualization, feature extraction, segmentation, image-guided surgery, representation of pictorial data, statistical shape analysis, computational physiology and telemedicine with medical images. This book highlights annotations for all the medical and clinical imaging researchers’ a fundamental advances of clinical and medical image analysis techniques. This book will be a good source for all the medical imaging and clinical research professionals, outstanding scientists, and educators from all around the world for network of knowledge sharing. This book will comprise high quality disseminations of new ideas, technology focus, research results and discussions on the evolution of Clinical and Medical image analysis techniques for the benefit of both scientific and industrial developments. Features: Research aspects in clinical and medical image processing Human Computer Interaction and interface in imaging diagnostics Intelligent Imaging Systems for effective analysis using machine learning algorithms Clinical and Scientific Evaluation of Imaging Studies Computer-aided disease detection and diagnosis Clinical evaluations of new technologies Mobility and assistive devices for challenged and elderly people This book serves as a reference book for researchers and doctoral students in the clinical and medical imaging domain including radiologists. Industries that manufacture imaging modality systems and develop optical systems would be especially interested in the challenges and solutions provided in the book. Professionals and practitioners in the medical and clinical imaging may be benefited directly from authors’ experiences.
Publisher: CRC Press
ISBN: 0429820496
Category : Computers
Languages : en
Pages : 264
Book Description
Advances in Computerized Analysis in Clinical and Medical Imaging book is devoted for spreading of knowledge through the publication of scholarly research, primarily in the fields of clinical & medical imaging. The types of chapters consented include those that cover the development and implementation of algorithms and strategies based on the use of geometrical, statistical, physical, functional to solve the following types of problems, using medical image datasets: visualization, feature extraction, segmentation, image-guided surgery, representation of pictorial data, statistical shape analysis, computational physiology and telemedicine with medical images. This book highlights annotations for all the medical and clinical imaging researchers’ a fundamental advances of clinical and medical image analysis techniques. This book will be a good source for all the medical imaging and clinical research professionals, outstanding scientists, and educators from all around the world for network of knowledge sharing. This book will comprise high quality disseminations of new ideas, technology focus, research results and discussions on the evolution of Clinical and Medical image analysis techniques for the benefit of both scientific and industrial developments. Features: Research aspects in clinical and medical image processing Human Computer Interaction and interface in imaging diagnostics Intelligent Imaging Systems for effective analysis using machine learning algorithms Clinical and Scientific Evaluation of Imaging Studies Computer-aided disease detection and diagnosis Clinical evaluations of new technologies Mobility and assistive devices for challenged and elderly people This book serves as a reference book for researchers and doctoral students in the clinical and medical imaging domain including radiologists. Industries that manufacture imaging modality systems and develop optical systems would be especially interested in the challenges and solutions provided in the book. Professionals and practitioners in the medical and clinical imaging may be benefited directly from authors’ experiences.
Front-End Vision and Multi-Scale Image Analysis
Author: Bart M. Haar Romeny
Publisher: Springer Science & Business Media
ISBN: 140208840X
Category : Computers
Languages : en
Pages : 470
Book Description
Many approaches have been proposed to solve the problem of finding the optic flow field of an image sequence. Three major classes of optic flow computation techniques can discriminated (see for a good overview Beauchemin and Barron IBeauchemin19951): gradient based (or differential) methods; phase based (or frequency domain) methods; correlation based (or area) methods; feature point (or sparse data) tracking methods; In this chapter we compute the optic flow as a dense optic flow field with a multi scale differential method. The method, originally proposed by Florack and Nielsen [Florack1998a] is known as the Multiscale Optic Flow Constrain Equation (MOFCE). This is a scale space version of the well known computer vision implementation of the optic flow constraint equation, as originally proposed by Horn and Schunck [Horn1981]. This scale space variation, as usual, consists of the introduction of the aperture of the observation in the process. The application to stereo has been described by Maas et al. [Maas 1995a, Maas 1996a]. Of course, difficulties arise when structure emerges or disappears, such as with occlusion, cloud formation etc. Then knowledge is needed about the processes and objects involved. In this chapter we focus on the scale space approach to the local measurement of optic flow, as we may expect the visual front end to do. 17. 2 Motion detection with pairs of receptive fields As a biologically motivated start, we begin with discussing some neurophysiological findings in the visual system with respect to motion detection.
Publisher: Springer Science & Business Media
ISBN: 140208840X
Category : Computers
Languages : en
Pages : 470
Book Description
Many approaches have been proposed to solve the problem of finding the optic flow field of an image sequence. Three major classes of optic flow computation techniques can discriminated (see for a good overview Beauchemin and Barron IBeauchemin19951): gradient based (or differential) methods; phase based (or frequency domain) methods; correlation based (or area) methods; feature point (or sparse data) tracking methods; In this chapter we compute the optic flow as a dense optic flow field with a multi scale differential method. The method, originally proposed by Florack and Nielsen [Florack1998a] is known as the Multiscale Optic Flow Constrain Equation (MOFCE). This is a scale space version of the well known computer vision implementation of the optic flow constraint equation, as originally proposed by Horn and Schunck [Horn1981]. This scale space variation, as usual, consists of the introduction of the aperture of the observation in the process. The application to stereo has been described by Maas et al. [Maas 1995a, Maas 1996a]. Of course, difficulties arise when structure emerges or disappears, such as with occlusion, cloud formation etc. Then knowledge is needed about the processes and objects involved. In this chapter we focus on the scale space approach to the local measurement of optic flow, as we may expect the visual front end to do. 17. 2 Motion detection with pairs of receptive fields As a biologically motivated start, we begin with discussing some neurophysiological findings in the visual system with respect to motion detection.
Computational Photography
Author: Rastislav Lukac
Publisher: CRC Press
ISBN: 1439817502
Category : Computers
Languages : en
Pages : 564
Book Description
Computational photography refers broadly to imaging techniques that enhance or extend the capabilities of digital photography. This new and rapidly developing research field has evolved from computer vision, image processing, computer graphics and applied optics—and numerous commercial products capitalizing on its principles have already appeared in diverse market applications, due to the gradual migration of computational algorithms from computers to imaging devices and software. Computational Photography: Methods and Applications provides a strong, fundamental understanding of theory and methods, and a foundation upon which to build solutions for many of today's most interesting and challenging computational imaging problems. Elucidating cutting-edge advances and applications in digital imaging, camera image processing, and computational photography, with a focus on related research challenges, this book: Describes single capture image fusion technology for consumer digital cameras Discusses the steps in a camera image processing pipeline, such as visual data compression, color correction and enhancement, denoising, demosaicking, super-resolution reconstruction, deblurring, and high dynamic range imaging Covers shadow detection for surveillance applications, camera-driven document rectification, bilateral filtering and its applications, and painterly rendering of digital images Presents machine-learning methods for automatic image colorization and digital face beautification Explores light field acquisition and processing, space-time light field rendering, and dynamic view synthesis with an array of cameras Because of the urgent challenges associated with emerging digital camera applications, image processing methods for computational photography are of paramount importance to research and development in the imaging community. Presenting the work of leading experts, and edited by a renowned authority in digital color imaging and camera image processing, this book considers the rapid developments in this area and addresses very particular research and application problems. It is ideal as a stand-alone professional reference for design and implementation of digital image and video processing tasks, and it can also be used to support graduate courses in computer vision, digital imaging, visual data processing, and computer graphics, among others.
Publisher: CRC Press
ISBN: 1439817502
Category : Computers
Languages : en
Pages : 564
Book Description
Computational photography refers broadly to imaging techniques that enhance or extend the capabilities of digital photography. This new and rapidly developing research field has evolved from computer vision, image processing, computer graphics and applied optics—and numerous commercial products capitalizing on its principles have already appeared in diverse market applications, due to the gradual migration of computational algorithms from computers to imaging devices and software. Computational Photography: Methods and Applications provides a strong, fundamental understanding of theory and methods, and a foundation upon which to build solutions for many of today's most interesting and challenging computational imaging problems. Elucidating cutting-edge advances and applications in digital imaging, camera image processing, and computational photography, with a focus on related research challenges, this book: Describes single capture image fusion technology for consumer digital cameras Discusses the steps in a camera image processing pipeline, such as visual data compression, color correction and enhancement, denoising, demosaicking, super-resolution reconstruction, deblurring, and high dynamic range imaging Covers shadow detection for surveillance applications, camera-driven document rectification, bilateral filtering and its applications, and painterly rendering of digital images Presents machine-learning methods for automatic image colorization and digital face beautification Explores light field acquisition and processing, space-time light field rendering, and dynamic view synthesis with an array of cameras Because of the urgent challenges associated with emerging digital camera applications, image processing methods for computational photography are of paramount importance to research and development in the imaging community. Presenting the work of leading experts, and edited by a renowned authority in digital color imaging and camera image processing, this book considers the rapid developments in this area and addresses very particular research and application problems. It is ideal as a stand-alone professional reference for design and implementation of digital image and video processing tasks, and it can also be used to support graduate courses in computer vision, digital imaging, visual data processing, and computer graphics, among others.