Author: Kristin J. Dana
Publisher: Springer Nature
ISBN: 3031018230
Category : Computers
Languages : en
Pages : 99
Book Description
Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance—to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and perturbations; and (5) support for physics-based interpretation to infer system properties from appearance. In recent years, computer vision has undergone a metamorphosis with classic algorithms adapting to new trends in deep learning. This text provides a tour of algorithm evolution including pattern recognition, segmentation and synthesis. We consider the general relevance and prominence of visual pattern analysis and applications that rely on computational models.
Computational Texture and Patterns
Author: Kristin J. Dana
Publisher: Springer Nature
ISBN: 3031018230
Category : Computers
Languages : en
Pages : 99
Book Description
Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance—to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and perturbations; and (5) support for physics-based interpretation to infer system properties from appearance. In recent years, computer vision has undergone a metamorphosis with classic algorithms adapting to new trends in deep learning. This text provides a tour of algorithm evolution including pattern recognition, segmentation and synthesis. We consider the general relevance and prominence of visual pattern analysis and applications that rely on computational models.
Publisher: Springer Nature
ISBN: 3031018230
Category : Computers
Languages : en
Pages : 99
Book Description
Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance—to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and perturbations; and (5) support for physics-based interpretation to infer system properties from appearance. In recent years, computer vision has undergone a metamorphosis with classic algorithms adapting to new trends in deep learning. This text provides a tour of algorithm evolution including pattern recognition, segmentation and synthesis. We consider the general relevance and prominence of visual pattern analysis and applications that rely on computational models.
Computer Vision Using Local Binary Patterns
Author: Matti Pietikäinen
Publisher: Springer Science & Business Media
ISBN: 0857297481
Category : Mathematics
Languages : en
Pages : 213
Book Description
The recent emergence of Local Binary Patterns (LBP) has led to significant progress in applying texture methods to various computer vision problems and applications. The focus of this research has broadened from 2D textures to 3D textures and spatiotemporal (dynamic) textures. Also, where texture was once utilized for applications such as remote sensing, industrial inspection and biomedical image analysis, the introduction of LBP-based approaches have provided outstanding results in problems relating to face and activity analysis, with future scope for face and facial expression recognition, biometrics, visual surveillance and video analysis. Computer Vision Using Local Binary Patterns provides a detailed description of the LBP methods and their variants both in spatial and spatiotemporal domains. This comprehensive reference also provides an excellent overview as to how texture methods can be utilized for solving different kinds of computer vision and image analysis problems. Source codes of the basic LBP algorithms, demonstrations, some databases and a comprehensive LBP bibliography can be found from an accompanying web site. Topics include: local binary patterns and their variants in spatial and spatiotemporal domains, texture classification and segmentation, description of interest regions, applications in image retrieval and 3D recognition - Recognition and segmentation of dynamic textures, background subtraction, recognition of actions, face analysis using still images and image sequences, visual speech recognition and LBP in various applications. Written by pioneers of LBP, this book is an essential resource for researchers, professional engineers and graduate students in computer vision, image analysis and pattern recognition. The book will also be of interest to all those who work with specific applications of machine vision.
Publisher: Springer Science & Business Media
ISBN: 0857297481
Category : Mathematics
Languages : en
Pages : 213
Book Description
The recent emergence of Local Binary Patterns (LBP) has led to significant progress in applying texture methods to various computer vision problems and applications. The focus of this research has broadened from 2D textures to 3D textures and spatiotemporal (dynamic) textures. Also, where texture was once utilized for applications such as remote sensing, industrial inspection and biomedical image analysis, the introduction of LBP-based approaches have provided outstanding results in problems relating to face and activity analysis, with future scope for face and facial expression recognition, biometrics, visual surveillance and video analysis. Computer Vision Using Local Binary Patterns provides a detailed description of the LBP methods and their variants both in spatial and spatiotemporal domains. This comprehensive reference also provides an excellent overview as to how texture methods can be utilized for solving different kinds of computer vision and image analysis problems. Source codes of the basic LBP algorithms, demonstrations, some databases and a comprehensive LBP bibliography can be found from an accompanying web site. Topics include: local binary patterns and their variants in spatial and spatiotemporal domains, texture classification and segmentation, description of interest regions, applications in image retrieval and 3D recognition - Recognition and segmentation of dynamic textures, background subtraction, recognition of actions, face analysis using still images and image sequences, visual speech recognition and LBP in various applications. Written by pioneers of LBP, this book is an essential resource for researchers, professional engineers and graduate students in computer vision, image analysis and pattern recognition. The book will also be of interest to all those who work with specific applications of machine vision.
Handbook Of Pattern Recognition And Computer Vision (2nd Edition)
Author: Chi Hau Chen
Publisher: World Scientific
ISBN: 9814497649
Category : Computers
Languages : en
Pages : 1045
Book Description
The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.
Publisher: World Scientific
ISBN: 9814497649
Category : Computers
Languages : en
Pages : 1045
Book Description
The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.
Computational Intelligence in Pattern Recognition
Author: Asit Kumar Das
Publisher: Springer Nature
ISBN: 9811524491
Category : Technology & Engineering
Languages : en
Pages : 593
Book Description
This book features high-quality research papers presented at the 2nd International Conference on Computational Intelligence in Pattern Recognition (CIPR 2020), held at the Institute of Engineering and Management, Kolkata, West Bengal, India, on 4–5 January 2020. It includes practical development experiences in various areas of data analysis and pattern recognition, focusing on soft computing technologies, clustering and classification algorithms, rough set and fuzzy set theory, evolutionary computations, neural science and neural network systems, image processing, combinatorial pattern matching, social network analysis, audio and video data analysis, data mining in dynamic environments, bioinformatics, hybrid computing, big data analytics and deep learning. It also provides innovative solutions to the challenges in these areas and discusses recent developments.
Publisher: Springer Nature
ISBN: 9811524491
Category : Technology & Engineering
Languages : en
Pages : 593
Book Description
This book features high-quality research papers presented at the 2nd International Conference on Computational Intelligence in Pattern Recognition (CIPR 2020), held at the Institute of Engineering and Management, Kolkata, West Bengal, India, on 4–5 January 2020. It includes practical development experiences in various areas of data analysis and pattern recognition, focusing on soft computing technologies, clustering and classification algorithms, rough set and fuzzy set theory, evolutionary computations, neural science and neural network systems, image processing, combinatorial pattern matching, social network analysis, audio and video data analysis, data mining in dynamic environments, bioinformatics, hybrid computing, big data analytics and deep learning. It also provides innovative solutions to the challenges in these areas and discusses recent developments.
Computational Modelling of Objects Represented in Images. Fundamentals, Methods and Applications
Author: João Manuel R.S. Tavares
Publisher: CRC Press
ISBN: 1351377132
Category : Computers
Languages : en
Pages : 481
Book Description
This book contains keynote lectures and full papers presented at the International Symposium on Computational Modelling of Objects Represented in Images (CompIMAGE), held in Coimbra, Portugal, on 20-21 October 2006. International contributions from nineteen countries provide a comprehensive coverage of the current state-of-the-art in the fields of: - Image Processing and Analysis; - Image Segmentation; - Data Interpolation; - Registration, Acquisition and Compression; - 3D Reconstruction; - Objects Tracking; - Motion and Deformation Analysis; - Objects Simulation; - Medical Imaging; - Computational Bioimaging and Visualization. Related techniques also covered in this book include the finite element method, modal analyses, stochastic methods, principal and independent components analyses and distribution models. Computational Modelling of Objects Represented in Images will be useful to academics, researchers and professionals in Computational Vision (image processing and analysis), Computer Sciences, and Computational Mechanics.
Publisher: CRC Press
ISBN: 1351377132
Category : Computers
Languages : en
Pages : 481
Book Description
This book contains keynote lectures and full papers presented at the International Symposium on Computational Modelling of Objects Represented in Images (CompIMAGE), held in Coimbra, Portugal, on 20-21 October 2006. International contributions from nineteen countries provide a comprehensive coverage of the current state-of-the-art in the fields of: - Image Processing and Analysis; - Image Segmentation; - Data Interpolation; - Registration, Acquisition and Compression; - 3D Reconstruction; - Objects Tracking; - Motion and Deformation Analysis; - Objects Simulation; - Medical Imaging; - Computational Bioimaging and Visualization. Related techniques also covered in this book include the finite element method, modal analyses, stochastic methods, principal and independent components analyses and distribution models. Computational Modelling of Objects Represented in Images will be useful to academics, researchers and professionals in Computational Vision (image processing and analysis), Computer Sciences, and Computational Mechanics.
Computational Models of Visual Processing
Author: Michael S. Landy
Publisher: MIT Press
ISBN: 9780262121552
Category : Medical
Languages : en
Pages : 420
Book Description
The more than twenty contributions in this book, all new and previously unpublished, provide an up-to-date survey of contemporary research on computational modeling of the visual system. The approaches represented range from neurophysiology to psychophysics, and from retinal function to the analysis of visual cues to motion, color, texture, and depth. The contributions are linked thematically by a consistent consideration of the links between empirical data and computational models in the study of visual function. An introductory chapter by Edward Adelson and James Bergen gives a new and elegant formalization of the elements of early vision. Subsequent sections treat receptors and sampling, models of neural function, detection and discrimination, color and shading, motion and texture, and 3D shape. Each section is introduced by a brief topical review and summary. ContributorsEdward H. Adelson, Albert J. Ahumada, Jr., James R. Bergen, David G. Birch, David H. Brainard, Heinrich H. Bülthoff, Charles Chubb, Nancy J. Coletta, Michael D'Zmura, John P. Frisby, Norma Graham, Norberto M. Grzywacz, P. William Haake, Michael J. Hawken, David J. Heeger, Donald C. Hood, Elizabeth B. Johnston, Daniel Kersten, Michael S. Landy, Peter Lennie, J. Stephen Mansfield, J. Anthony Movshon, Jacob Nachmias, Andrew J. Parker, Denis G. Pelli, Stephen B. Pollard, R. Clay Reid, Robert Shapley, Carlo L. M. Tiana, Brian A. Wandell, Andrew B. Watson, David R. Williams, Hugh R. Wilson, Yuede. Yang, Alan L. Yuille
Publisher: MIT Press
ISBN: 9780262121552
Category : Medical
Languages : en
Pages : 420
Book Description
The more than twenty contributions in this book, all new and previously unpublished, provide an up-to-date survey of contemporary research on computational modeling of the visual system. The approaches represented range from neurophysiology to psychophysics, and from retinal function to the analysis of visual cues to motion, color, texture, and depth. The contributions are linked thematically by a consistent consideration of the links between empirical data and computational models in the study of visual function. An introductory chapter by Edward Adelson and James Bergen gives a new and elegant formalization of the elements of early vision. Subsequent sections treat receptors and sampling, models of neural function, detection and discrimination, color and shading, motion and texture, and 3D shape. Each section is introduced by a brief topical review and summary. ContributorsEdward H. Adelson, Albert J. Ahumada, Jr., James R. Bergen, David G. Birch, David H. Brainard, Heinrich H. Bülthoff, Charles Chubb, Nancy J. Coletta, Michael D'Zmura, John P. Frisby, Norma Graham, Norberto M. Grzywacz, P. William Haake, Michael J. Hawken, David J. Heeger, Donald C. Hood, Elizabeth B. Johnston, Daniel Kersten, Michael S. Landy, Peter Lennie, J. Stephen Mansfield, J. Anthony Movshon, Jacob Nachmias, Andrew J. Parker, Denis G. Pelli, Stephen B. Pollard, R. Clay Reid, Robert Shapley, Carlo L. M. Tiana, Brian A. Wandell, Andrew B. Watson, David R. Williams, Hugh R. Wilson, Yuede. Yang, Alan L. Yuille
Computational Neuroscience
Author: J.M. Bower
Publisher: Elsevier
ISBN: 9780444503077
Category : Computers
Languages : en
Pages : 1114
Book Description
This volume includes papers originally presented at the 7th annual Computational Neuroscience Meeting (CNS'98) held in July of 1998 at the Fess Parker Doubletree Inn in Santa Barbara, California. The CNS meetings bring together computational neuroscientists representing many different fields and backgrounds as well as many different experimental preparations and theoretical approaches. The papers published here range from pure experimental neurobiology, to neuro-ethology, mathematics, physics, and engineering. In all cases the research described is focused on understanding how nervous systems compute. The actual subjects of the research include a highly diverse number of preparations, modeling approaches, and analysis techniques. Accordingly, this volume reflects the breadth and depth of current research in computational neuroscience taking place throughout the world.
Publisher: Elsevier
ISBN: 9780444503077
Category : Computers
Languages : en
Pages : 1114
Book Description
This volume includes papers originally presented at the 7th annual Computational Neuroscience Meeting (CNS'98) held in July of 1998 at the Fess Parker Doubletree Inn in Santa Barbara, California. The CNS meetings bring together computational neuroscientists representing many different fields and backgrounds as well as many different experimental preparations and theoretical approaches. The papers published here range from pure experimental neurobiology, to neuro-ethology, mathematics, physics, and engineering. In all cases the research described is focused on understanding how nervous systems compute. The actual subjects of the research include a highly diverse number of preparations, modeling approaches, and analysis techniques. Accordingly, this volume reflects the breadth and depth of current research in computational neuroscience taking place throughout the world.
Pattern Recognition and Image Analysis
Author: Francisco J. Perales López
Publisher: Springer
ISBN: 3540448713
Category : Computers
Languages : en
Pages : 1170
Book Description
The refereed proceedings of the First Iberial Conference on Pattern Recognition and Image Analysis, IbPria 2003, held in Puerto de Andratx, Mallorca, Spain in June 2003. The 130 revised papers presented were carefully reviewed and selected from 185 full papers submitted. All current aspects of ongoing research in computer vision, image processing, pattern recognition, and speech recognition are addressed.
Publisher: Springer
ISBN: 3540448713
Category : Computers
Languages : en
Pages : 1170
Book Description
The refereed proceedings of the First Iberial Conference on Pattern Recognition and Image Analysis, IbPria 2003, held in Puerto de Andratx, Mallorca, Spain in June 2003. The 130 revised papers presented were carefully reviewed and selected from 185 full papers submitted. All current aspects of ongoing research in computer vision, image processing, pattern recognition, and speech recognition are addressed.
Human Symmetry Perception and Its Computational Analysis
Author: Christopher W. Tyler
Publisher: Psychology Press
ISBN: 1135628769
Category : Psychology
Languages : en
Pages : 401
Book Description
Prefer to have this written by Tyler. EW will ask him to write it.
Publisher: Psychology Press
ISBN: 1135628769
Category : Psychology
Languages : en
Pages : 401
Book Description
Prefer to have this written by Tyler. EW will ask him to write it.
Computational Models for Cognitive Vision
Author: Hiranmay Ghosh
Publisher: John Wiley & Sons
ISBN: 1119527864
Category : Computers
Languages : en
Pages : 244
Book Description
Learn how to apply cognitive principles to the problems of computer vision Computational Models for Cognitive Vision formulates the computational models for the cognitive principles found in biological vision, and applies those models to computer vision tasks. Such principles include perceptual grouping, attention, visual quality and aesthetics, knowledge-based interpretation and learning, to name a few. The author’s ultimate goal is to provide a framework for creation of a machine vision system with the capability and versatility of the human vision. Written by Dr. Hiranmay Ghosh, the book takes readers through the basic principles and the computational models for cognitive vision, Bayesian reasoning for perception and cognition, and other related topics, before establishing the relationship of cognitive vision with the multi-disciplinary field broadly referred to as “artificial intelligence”. The principles are illustrated with diverse application examples in computer vision, such as computational photography, digital heritage and social robots. The author concludes with suggestions for future research and salient observations about the state of the field of cognitive vision. Other topics covered in the book include: · knowledge representation techniques · evolution of cognitive architectures · deep learning approaches for visual cognition Undergraduate students, graduate students, engineers, and researchers interested in cognitive vision will consider this an indispensable and practical resource in the development and study of computer vision.
Publisher: John Wiley & Sons
ISBN: 1119527864
Category : Computers
Languages : en
Pages : 244
Book Description
Learn how to apply cognitive principles to the problems of computer vision Computational Models for Cognitive Vision formulates the computational models for the cognitive principles found in biological vision, and applies those models to computer vision tasks. Such principles include perceptual grouping, attention, visual quality and aesthetics, knowledge-based interpretation and learning, to name a few. The author’s ultimate goal is to provide a framework for creation of a machine vision system with the capability and versatility of the human vision. Written by Dr. Hiranmay Ghosh, the book takes readers through the basic principles and the computational models for cognitive vision, Bayesian reasoning for perception and cognition, and other related topics, before establishing the relationship of cognitive vision with the multi-disciplinary field broadly referred to as “artificial intelligence”. The principles are illustrated with diverse application examples in computer vision, such as computational photography, digital heritage and social robots. The author concludes with suggestions for future research and salient observations about the state of the field of cognitive vision. Other topics covered in the book include: · knowledge representation techniques · evolution of cognitive architectures · deep learning approaches for visual cognition Undergraduate students, graduate students, engineers, and researchers interested in cognitive vision will consider this an indispensable and practical resource in the development and study of computer vision.