Computational Systems Biology of Cancer

Computational Systems Biology of Cancer PDF Author: Emmanuel Barillot
Publisher: CRC Press
ISBN: 1439831440
Category : Science
Languages : en
Pages : 463

Get Book Here

Book Description
The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, France), Computational Systems Biology of Cancer explains how to apply computational systems biology approaches to cancer research. The authors provide proven techniques and tools for cancer bioinformatics and systems biology research. Effectively Use Algorithmic Methods and Bioinformatics Tools in Real Biological Applications Suitable for readers in both the computational and life sciences, this self-contained guide assumes very limited background in biology, mathematics, and computer science. It explores how computational systems biology can help fight cancer in three essential aspects: Categorising tumours Finding new targets Designing improved and tailored therapeutic strategies Each chapter introduces a problem, presents applicable concepts and state-of-the-art methods, describes existing tools, illustrates applications using real cases, lists publically available data and software, and includes references to further reading. Some chapters also contain exercises. Figures from the text and scripts/data for reproducing a breast cancer data analysis are available at www.cancer-systems-biology.net.

Computational Systems Biology of Cancer

Computational Systems Biology of Cancer PDF Author: Emmanuel Barillot
Publisher: CRC Press
ISBN: 1439831440
Category : Science
Languages : en
Pages : 463

Get Book Here

Book Description
The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, France), Computational Systems Biology of Cancer explains how to apply computational systems biology approaches to cancer research. The authors provide proven techniques and tools for cancer bioinformatics and systems biology research. Effectively Use Algorithmic Methods and Bioinformatics Tools in Real Biological Applications Suitable for readers in both the computational and life sciences, this self-contained guide assumes very limited background in biology, mathematics, and computer science. It explores how computational systems biology can help fight cancer in three essential aspects: Categorising tumours Finding new targets Designing improved and tailored therapeutic strategies Each chapter introduces a problem, presents applicable concepts and state-of-the-art methods, describes existing tools, illustrates applications using real cases, lists publically available data and software, and includes references to further reading. Some chapters also contain exercises. Figures from the text and scripts/data for reproducing a breast cancer data analysis are available at www.cancer-systems-biology.net.

Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling

Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling PDF Author: Dominik Wodarz
Publisher: World Scientific
ISBN: 9814481874
Category : Science
Languages : en
Pages : 266

Get Book Here

Book Description
The book shows how mathematical and computational models can be used to study cancer biology. It introduces the concept of mathematical modeling and then applies it to a variety of topics in cancer biology. These include aspects of cancer initiation and progression, such as the somatic evolution of cells, genetic instability, and angiogenesis. The book also discusses the use of mathematical models for the analysis of therapeutic approaches such as chemotherapy, immunotherapy, and the use of oncolytic viruses.

Computational Systems Biology Approaches in Cancer Research

Computational Systems Biology Approaches in Cancer Research PDF Author: Inna Kuperstein
Publisher: CRC Press
ISBN: 1000682927
Category : Computers
Languages : en
Pages : 119

Get Book Here

Book Description
Praise for Computational Systems BiologyApproaches in Cancer Research: "Complex concepts are written clearly and with informative illustrations and useful links. The book is enjoyable to read yet provides sufficient depth to serve as a valuable resource for both students and faculty." — Trey Ideker, Professor of Medicine, UC Xan Diego, School of Medicine "This volume is attractive because it addresses important and timely topics for research and teaching on computational methods in cancer research. It covers a broad variety of approaches, exposes recent innovations in computational methods, and provides acces to source code and to dedicated interactive web sites." — Yves Moreau, Department of Electrical Engineering, SysBioSys Centre for Computational Systems Biology, University of Leuven With the availability of massive amounts of data in biology, the need for advanced computational tools and techniques is becoming increasingly important and key in understanding biology in disease and healthy states. This book focuses on computational systems biology approaches, with a particular lens on tackling one of the most challenging diseases - cancer. The book provides an important reference and teaching material in the field of computational biology in general and cancer systems biology in particular. The book presents a list of modern approaches in systems biology with application to cancer research and beyond. It is structured in a didactic form such that the idea of each approach can easily be grasped from the short text and self-explanatory figures. The coverage of topics is diverse: from pathway resources, through methods for data analysis and single data analysis to drug response predictors, classifiers and image analysis using machine learning and artificial intelligence approaches. Features Up to date using a wide range of approaches Applicationexample in each chapter Online resources with useful applications’

Cancer Systems Biology

Cancer Systems Biology PDF Author: Edwin Wang
Publisher: CRC Press
ISBN: 1439811865
Category : Computers
Languages : en
Pages : 458

Get Book Here

Book Description
The unprecedented amount of data produced with high-throughput experimentation forces biologists to employ mathematical representation and computation to glean meaningful information in systems-level biology. Applying this approach to the underlying molecular mechanisms of tumorgenesis, cancer research is enjoying a series of new discoveries and biological insights. Unique in its dualistic approach, this book introduces the concepts and theories of systems biology and their applications in cancer research. It presents basic cancer biology and cutting-edge topics of cancer research for computational biologists alongside systems biology analysis tools for experimental biologists.

Computational Systems Biology

Computational Systems Biology PDF Author: Andres Kriete
Publisher: Academic Press
ISBN: 0124059384
Category : Science
Languages : en
Pages : 549

Get Book Here

Book Description
This comprehensively revised second edition of Computational Systems Biology discusses the experimental and theoretical foundations of the function of biological systems at the molecular, cellular or organismal level over temporal and spatial scales, as systems biology advances to provide clinical solutions to complex medical problems. In particular the work focuses on the engineering of biological systems and network modeling. - Logical information flow aids understanding of basic building blocks of life through disease phenotypes - Evolved principles gives insight into underlying organizational principles of biological organizations, and systems processes, governing functions such as adaptation or response patterns - Coverage of technical tools and systems helps researchers to understand and resolve specific systems biology problems using advanced computation - Multi-scale modeling on disparate scales aids researchers understanding of dependencies and constraints of spatio-temporal relationships fundamental to biological organization and function.

Systems Biology of Cancer

Systems Biology of Cancer PDF Author: Sam Thiagalingam
Publisher: Cambridge University Press
ISBN: 0521493390
Category : Mathematics
Languages : en
Pages : 597

Get Book Here

Book Description
An overview of the current systems biology-based knowledge and the experimental approaches for deciphering the biological basis of cancer.

Learning and Inference in Computational Systems Biology

Learning and Inference in Computational Systems Biology PDF Author: Neil D. Lawrence
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 384

Get Book Here

Book Description
Tools and techniques for biological inference problems at scales ranging from genome-wide to pathway-specific. Computational systems biology unifies the mechanistic approach of systems biology with the data-driven approach of computational biology. Computational systems biology aims to develop algorithms that uncover the structure and parameterization of the underlying mechanistic model--in other words, to answer specific questions about the underlying mechanisms of a biological system--in a process that can be thought of as learning or inference. This volume offers state-of-the-art perspectives from computational biology, statistics, modeling, and machine learning on new methodologies for learning and inference in biological networks.The chapters offer practical approaches to biological inference problems ranging from genome-wide inference of genetic regulation to pathway-specific studies. Both deterministic models (based on ordinary differential equations) and stochastic models (which anticipate the increasing availability of data from small populations of cells) are considered. Several chapters emphasize Bayesian inference, so the editors have included an introduction to the philosophy of the Bayesian approach and an overview of current work on Bayesian inference. Taken together, the methods discussed by the experts in Learning and Inference in Computational Systems Biology provide a foundation upon which the next decade of research in systems biology can be built. Florence d'Alch e-Buc, John Angus, Matthew J. Beal, Nicholas Brunel, Ben Calderhead, Pei Gao, Mark Girolami, Andrew Golightly, Dirk Husmeier, Johannes Jaeger, Neil D. Lawrence, Juan Li, Kuang Lin, Pedro Mendes, Nicholas A. M. Monk, Eric Mjolsness, Manfred Opper, Claudia Rangel, Magnus Rattray, Andreas Ruttor, Guido Sanguinetti, Michalis Titsias, Vladislav Vyshemirsky, David L. Wild, Darren Wilkinson, Guy Yosiphon

Cancer Bioinformatics

Cancer Bioinformatics PDF Author: Ying Xu
Publisher: Springer
ISBN: 1493913816
Category : Computers
Languages : en
Pages : 386

Get Book Here

Book Description
This book provides a framework for computational researchers studying the basics of cancer through comparative analyses of omic data. It discusses how key cancer pathways can be analyzed and discovered to derive new insights into the disease and identifies diagnostic and prognostic markers for cancer. Chapters explain the basic cancer biology and how cancer develops, including the many potential survival routes. The examination of gene-expression patterns uncovers commonalities across multiple cancers and specific characteristics of individual cancer types. The authors also treat cancer as an evolving complex system, explore future case studies, and summarize the essential online data sources. Cancer Bioinformatics is designed for practitioners and researchers working in cancer research and bioinformatics. It is also suitable as a secondary textbook for advanced-level students studying computer science, biostatistics or biomedicine.

A Practical Guide To Cancer Systems Biology

A Practical Guide To Cancer Systems Biology PDF Author: Hsueh-fen Juan
Publisher: World Scientific
ISBN: 9813229160
Category : Medical
Languages : en
Pages : 153

Get Book Here

Book Description
Systems biology combines computational and experimental approaches to analyze complex biological systems and focuses on understanding functional activities from a systems-wide perspective. It provides an iterative process of experimental measurements, data analysis, and computational simulation to model biological behavior. This book provides explained protocols for high-throughput experiments and computational analysis procedures central to cancer systems biology research and education. Readers will learn how to generate and analyze high-throughput data, therapeutic target protein structure modeling and docking simulation for drug discovery. This is the first practical guide for students and scientists who wish to become systems biologists or utilize the approach for cancer research.

An Introduction to Computational Systems Biology

An Introduction to Computational Systems Biology PDF Author: Karthik Raman
Publisher: CRC Press
ISBN: 0429944527
Category : Computers
Languages : en
Pages : 359

Get Book Here

Book Description
This book delivers a comprehensive and insightful account of applying mathematical modelling approaches to very large biological systems and networks—a fundamental aspect of computational systems biology. The book covers key modelling paradigms in detail, while at the same time retaining a simplicity that will appeal to those from less quantitative fields. Key Features: A hands-on approach to modelling Covers a broad spectrum of modelling, from static networks to dynamic models and constraint-based models Thoughtful exercises to test and enable understanding of concepts State-of-the-art chapters on exciting new developments, like community modelling and biological circuit design Emphasis on coding and software tools for systems biology Companion website featuring lecture videos, figure slides, codes, supplementary exercises, further reading, and appendices: https://ramanlab.github.io/SysBioBook/ An Introduction to Computational Systems Biology: Systems-Level Modelling of Cellular Networks is highly multi-disciplinary and will appeal to biologists, engineers, computer scientists, mathematicians and others.