Computational Statistics Handbook with MATLAB

Computational Statistics Handbook with MATLAB PDF Author: Wendy L. Martinez
Publisher: CRC Press
ISBN: 1420010867
Category : Mathematics
Languages : en
Pages : 794

Get Book Here

Book Description
As with the bestselling first edition, Computational Statistics Handbook with MATLAB, Second Edition covers some of the most commonly used contemporary techniques in computational statistics. With a strong, practical focus on implementing the methods, the authors include algorithmic descriptions of the procedures as well as

Computational Statistics Handbook with MATLAB

Computational Statistics Handbook with MATLAB PDF Author: Wendy L. Martinez
Publisher: CRC Press
ISBN: 1420010867
Category : Mathematics
Languages : en
Pages : 794

Get Book Here

Book Description
As with the bestselling first edition, Computational Statistics Handbook with MATLAB, Second Edition covers some of the most commonly used contemporary techniques in computational statistics. With a strong, practical focus on implementing the methods, the authors include algorithmic descriptions of the procedures as well as

Computational Statistics Handbook with MATLAB

Computational Statistics Handbook with MATLAB PDF Author: Wendy L. Martinez
Publisher: CRC Press
ISBN: 1466592745
Category : Business & Economics
Languages : en
Pages : 751

Get Book Here

Book Description
A Strong Practical Focus on Applications and AlgorithmsComputational Statistics Handbook with MATLAB, Third Edition covers today's most commonly used techniques in computational statistics while maintaining the same philosophy and writing style of the bestselling previous editions. The text keeps theoretical concepts to a minimum, emphasizing the i

Computational Statistics Handbook with MATLAB

Computational Statistics Handbook with MATLAB PDF Author: Wendy L. Martinez
Publisher: CRC Press
ISBN: 1420035630
Category : Mathematics
Languages : en
Pages : 611

Get Book Here

Book Description
Approaching computational statistics through its theoretical aspects can be daunting. Often intimidated or distracted by the theory, researchers and students can lose sight of the actual goals and applications of the subject. What they need are its key concepts, an understanding of its methods, experience with its implementation, and practice with

Exploratory Data Analysis with MATLAB

Exploratory Data Analysis with MATLAB PDF Author: Wendy L. Martinez
Publisher: CRC Press
ISBN: 1315349841
Category : Mathematics
Languages : en
Pages : 589

Get Book Here

Book Description
Praise for the Second Edition: "The authors present an intuitive and easy-to-read book. ... accompanied by many examples, proposed exercises, good references, and comprehensive appendices that initiate the reader unfamiliar with MATLAB." —Adolfo Alvarez Pinto, International Statistical Review "Practitioners of EDA who use MATLAB will want a copy of this book. ... The authors have done a great service by bringing together so many EDA routines, but their main accomplishment in this dynamic text is providing the understanding and tools to do EDA. —David A Huckaby, MAA Reviews Exploratory Data Analysis (EDA) is an important part of the data analysis process. The methods presented in this text are ones that should be in the toolkit of every data scientist. As computational sophistication has increased and data sets have grown in size and complexity, EDA has become an even more important process for visualizing and summarizing data before making assumptions to generate hypotheses and models. Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book’s website. New to the Third Edition Random projections and estimating local intrinsic dimensionality Deep learning autoencoders and stochastic neighbor embedding Minimum spanning tree and additional cluster validity indices Kernel density estimation Plots for visualizing data distributions, such as beanplots and violin plots A chapter on visualizing categorical data

Exploratory Data Analysis with MATLAB

Exploratory Data Analysis with MATLAB PDF Author: Wendy L. Martinez
Publisher: CRC Press
ISBN: 1498776078
Category : Mathematics
Languages : en
Pages : 590

Get Book Here

Book Description
Praise for the Second Edition: "The authors present an intuitive and easy-to-read book. ... accompanied by many examples, proposed exercises, good references, and comprehensive appendices that initiate the reader unfamiliar with MATLAB." —Adolfo Alvarez Pinto, International Statistical Review "Practitioners of EDA who use MATLAB will want a copy of this book. ... The authors have done a great service by bringing together so many EDA routines, but their main accomplishment in this dynamic text is providing the understanding and tools to do EDA. —David A Huckaby, MAA Reviews Exploratory Data Analysis (EDA) is an important part of the data analysis process. The methods presented in this text are ones that should be in the toolkit of every data scientist. As computational sophistication has increased and data sets have grown in size and complexity, EDA has become an even more important process for visualizing and summarizing data before making assumptions to generate hypotheses and models. Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book’s website. New to the Third Edition Random projections and estimating local intrinsic dimensionality Deep learning autoencoders and stochastic neighbor embedding Minimum spanning tree and additional cluster validity indices Kernel density estimation Plots for visualizing data distributions, such as beanplots and violin plots A chapter on visualizing categorical data

MATLAB Guide

MATLAB Guide PDF Author: Desmond J. Higham
Publisher: SIAM
ISBN: 1611974658
Category : Science
Languages : en
Pages : 485

Get Book Here

Book Description
MATLAB is an interactive system for numerical computation that is widely used for teaching and research in industry and academia. It provides a modern programming language and problem solving environment, with powerful data structures, customizable graphics, and easy-to-use editing and debugging tools. This third edition of MATLAB Guide completely revises and updates the best-selling second edition and is more than 30 percent longer. The book remains a lively, concise introduction to the most popular and important features of MATLAB and the Symbolic Math Toolbox. Key features are a tutorial in Chapter 1 that gives a hands-on overview of MATLAB; a thorough treatment of MATLAB mathematics, including the linear algebra and numerical analysis functions and the differential equation solvers; and a web page at http://www.siam.org/books/ot150 that provides example program files, updates, and links to MATLAB resources. The new edition contains color figures throughout; includes pithy discussions of related topics in new ?Asides" boxes that augment the text; has new chapters on the Parallel Computing Toolbox, object-oriented programming, graphs, and large data sets; covers important new MATLAB data types such as categorical arrays, string arrays, tall arrays, tables, and timetables; contains more on MATLAB workflow, including the Live Editor and unit tests; and fully reflects major updates to the MATLAB graphics system. This book is suitable for both beginners and more experienced users, including students, researchers, and practitioners.

Statistical Computing with R, Second Edition

Statistical Computing with R, Second Edition PDF Author: Maria L. Rizzo
Publisher: CRC Press
ISBN: 0429527764
Category : Business & Economics
Languages : en
Pages : 380

Get Book Here

Book Description
Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. This second edition continues to encompass the traditional core material of computational statistics, with an

Exploratory Multivariate Analysis by Example Using R

Exploratory Multivariate Analysis by Example Using R PDF Author: Francois Husson
Publisher: CRC Press
ISBN: 1315301857
Category : Mathematics
Languages : en
Pages : 200

Get Book Here

Book Description
Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R, Second Edition focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) a

Textual Data Science with R

Textual Data Science with R PDF Author: Mónica Bécue-Bertaut
Publisher: CRC Press
ISBN: 1351816357
Category : Mathematics
Languages : en
Pages : 158

Get Book Here

Book Description
Textual Statistics with R comprehensively covers the main multidimensional methods in textual statistics supported by a specially-written package in R. Methods discussed include correspondence analysis, clustering, and multiple factor analysis for contigency tables. Each method is illuminated by applications. The book is aimed at researchers and students in statistics, social sciences, hiistory, literature and linguistics. The book will be of interest to anyone from practitioners needing to extract information from texts to students in the field of massive data, where the ability to process textual data is becoming essential.

Data Science Foundations

Data Science Foundations PDF Author: Fionn Murtagh
Publisher: CRC Press
ISBN: 1498763944
Category : Computers
Languages : en
Pages : 224

Get Book Here

Book Description
"Data Science Foundations is most welcome and, indeed, a piece of literature that the field is very much in need of...quite different from most data analytics texts which largely ignore foundational concepts and simply present a cookbook of methods...a very useful text and I would certainly use it in my teaching." - Mark Girolami, Warwick University Data Science encompasses the traditional disciplines of mathematics, statistics, data analysis, machine learning, and pattern recognition. This book is designed to provide a new framework for Data Science, based on a solid foundation in mathematics and computational science. It is written in an accessible style, for readers who are engaged with the subject but not necessarily experts in all aspects. It includes a wide range of case studies from diverse fields, and seeks to inspire and motivate the reader with respect to data, associated information, and derived knowledge.