Computational Organometallic Chemistry

Computational Organometallic Chemistry PDF Author: Olaf Wiest
Publisher: Springer Science & Business Media
ISBN: 3642252575
Category : Science
Languages : en
Pages : 262

Get Book Here

Book Description
Computational methods have become an indispensible tool for elucidating the mechanism of organometallic reactions. This snapshot of state-of-the-art computational studies provides an overview of the vast field of computational organometallic chemistry. Authors from Asia, Europe and the US have been selected to contribute a chapter on their specialist areas. Topics addressed include: DFT studies on zirconium-mediated reactions, force field methods in organometallic chemistry, hydrogenation of π-systems, oxidative functionalization of unactivated C-H bonds and olefins, the osmylation reaction, and cobalt carbonyl clusters. The breadth and depth of the contributions demonstrate not only the crucial role that computational methods play in the study of a wide range of organometallic reactions, but also attest the robust health of the field, which continues to benefit from, as well as inspire novel experimental studies.

Computational Organometallic Chemistry

Computational Organometallic Chemistry PDF Author: Olaf Wiest
Publisher: Springer Science & Business Media
ISBN: 3642252575
Category : Science
Languages : en
Pages : 262

Get Book Here

Book Description
Computational methods have become an indispensible tool for elucidating the mechanism of organometallic reactions. This snapshot of state-of-the-art computational studies provides an overview of the vast field of computational organometallic chemistry. Authors from Asia, Europe and the US have been selected to contribute a chapter on their specialist areas. Topics addressed include: DFT studies on zirconium-mediated reactions, force field methods in organometallic chemistry, hydrogenation of π-systems, oxidative functionalization of unactivated C-H bonds and olefins, the osmylation reaction, and cobalt carbonyl clusters. The breadth and depth of the contributions demonstrate not only the crucial role that computational methods play in the study of a wide range of organometallic reactions, but also attest the robust health of the field, which continues to benefit from, as well as inspire novel experimental studies.

Computational Organometallic Chemistry

Computational Organometallic Chemistry PDF Author: Thomas R. Cundari
Publisher: CRC Press
ISBN: 9780824704780
Category : Science
Languages : en
Pages : 450

Get Book Here

Book Description
This work provides a how-to approach to the fundamentals, methodologies and dynamics of computational organometallic chemistry, including classical and molecular mechanics (MM), quantum mechanics (QM), and hybrid MM/QM techniques. It demonstrates applications in actinide chemistry, catalysis, main group chemistry, medicine, and organic synthesis.

Computational Organic Chemistry

Computational Organic Chemistry PDF Author: Steven M. Bachrach
Publisher: John Wiley & Sons
ISBN: 1118291921
Category : Science
Languages : en
Pages : 653

Get Book Here

Book Description
The Second Edition demonstrates how computational chemistry continues to shed new light on organic chemistry The Second Edition of author Steven Bachrach’s highly acclaimed Computational Organic Chemistry reflects the tremendous advances in computational methods since the publication of the First Edition, explaining how these advances have shaped our current understanding of organic chemistry. Readers familiar with the First Edition will discover new and revised material in all chapters, including new case studies and examples. There’s also a new chapter dedicated to computational enzymology that demonstrates how principles of quantum mechanics applied to organic reactions can be extended to biological systems. Computational Organic Chemistry covers a broad range of problems and challenges in organic chemistry where computational chemistry has played a significant role in developing new theories or where it has provided additional evidence to support experimentally derived insights. Readers do not have to be experts in quantum mechanics. The first chapter of the book introduces all of the major theoretical concepts and definitions of quantum mechanics followed by a chapter dedicated to computed spectral properties and structure identification. Next, the book covers: Fundamentals of organic chemistry Pericyclic reactions Diradicals and carbenes Organic reactions of anions Solution-phase organic chemistry Organic reaction dynamics The final chapter offers new computational approaches to understand enzymes. The book features interviews with preeminent computational chemists, underscoring the role of collaboration in developing new science. Three of these interviews are new to this edition. Readers interested in exploring individual topics in greater depth should turn to the book’s ancillary website www.comporgchem.com, which offers updates and supporting information. Plus, every cited article that is available in electronic form is listed with a link to the article.

Computational Methods in Organometallic Catalysis

Computational Methods in Organometallic Catalysis PDF Author: Yu Lan
Publisher: John Wiley & Sons
ISBN: 3527346015
Category : Science
Languages : en
Pages : 50

Get Book Here

Book Description
Computational Methods in Organometallic Catalysis Discover recent advances in the mechanistic study of organometallic catalysis In Computational Methods in Organometallic Catalysis: From Elementary Reactions to Mechanisms, distinguished chemist and author Yu Lan delivers a synthesis of the use of calculation methods and experimental techniques to improve the efficiency of reaction and yield of product and to uncover the factors that control the selectivity of product. Providing not only a theoretical overview of organometallic catalysis, the book also describes computational studies for the mechanism of transition-metal-assisted reactions. You’ll learn about Ni-, Pd-, Pt-, Co-, Rh-, Ir-, Fe-, Ru-, Mn-, Cu-, Ag-, and Au- catalysis. You’ll also discover many of the experimental and theoretical advances in organometallic catalysis reported in the recent literature. The book summarizes and generalizes the advances made in the mechanistic study of organometallic catalysis. Readers will also benefit from the inclusion of: A thorough introduction to computational organometallic chemistry, including a brief history of the discipline and the use of computational tools to study the mechanism of organometallic chemistry An exploration of computational methods in organometallic chemistry, including density functional theory methods and basis sets and their application in mechanism studies A practical discussion of elementary reactions in organometallic chemistry, including coordination and dissociation, oxidative addition, reductive elimination, insertion, elimination, transmetallation, and metathesis A concise treatment of the theoretical study of transition-metal catalysis. Perfect for organic, catalytic, complex, and structural chemists, Computational Methods in Organometallic Catalysis will also earn a place in the libraries of theoretical chemists seeking a one-stop organometallic catalysis resource with a focus on the mechanism of transition-metal-assisted reactions.

Computational Organic Chemistry

Computational Organic Chemistry PDF Author: Steven M. Bachrach
Publisher: John Wiley & Sons
ISBN: 1118671228
Category : Science
Languages : en
Pages : 653

Get Book Here

Book Description
The Second Edition demonstrates how computational chemistry continues to shed new light on organic chemistry The Second Edition of author Steven Bachrach’s highly acclaimed Computational Organic Chemistry reflects the tremendous advances in computational methods since the publication of the First Edition, explaining how these advances have shaped our current understanding of organic chemistry. Readers familiar with the First Edition will discover new and revised material in all chapters, including new case studies and examples. There’s also a new chapter dedicated to computational enzymology that demonstrates how principles of quantum mechanics applied to organic reactions can be extended to biological systems. Computational Organic Chemistry covers a broad range of problems and challenges in organic chemistry where computational chemistry has played a significant role in developing new theories or where it has provided additional evidence to support experimentally derived insights. Readers do not have to be experts in quantum mechanics. The first chapter of the book introduces all of the major theoretical concepts and definitions of quantum mechanics followed by a chapter dedicated to computed spectral properties and structure identification. Next, the book covers: Fundamentals of organic chemistry Pericyclic reactions Diradicals and carbenes Organic reactions of anions Solution-phase organic chemistry Organic reaction dynamics The final chapter offers new computational approaches to understand enzymes. The book features interviews with preeminent computational chemists, underscoring the role of collaboration in developing new science. Three of these interviews are new to this edition. Readers interested in exploring individual topics in greater depth should turn to the book’s ancillary website www.comporgchem.com, which offers updates and supporting information. Plus, every cited article that is available in electronic form is listed with a link to the article.

A Laboratory Book of Computational Organic Chemistry

A Laboratory Book of Computational Organic Chemistry PDF Author: Warren J. Hehre
Publisher:
ISBN: 9780964349551
Category : Chemistry, Organic
Languages : en
Pages : 291

Get Book Here

Book Description


Computational Studies in Organometallic Chemistry

Computational Studies in Organometallic Chemistry PDF Author: Stuart A. Macgregor
Publisher: Springer
ISBN: 3319316389
Category : Science
Languages : en
Pages : 186

Get Book Here

Book Description
The series Structure and Bonding publishes critical Reviews on Topics of Research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed.

Essentials of Computational Chemistry

Essentials of Computational Chemistry PDF Author: Christopher J. Cramer
Publisher: John Wiley & Sons
ISBN: 1118712277
Category : Science
Languages : en
Pages : 624

Get Book Here

Book Description
Essentials of Computational Chemistry provides a balanced introduction to this dynamic subject. Suitable for both experimentalists and theorists, a wide range of samples and applications are included drawn from all key areas. The book carefully leads the reader thorough the necessary equations providing information explanations and reasoning where necessary and firmly placing each equation in context.

New Directions in the Modeling of Organometallic Reactions

New Directions in the Modeling of Organometallic Reactions PDF Author: Agustí Lledós
Publisher: Springer Nature
ISBN: 3030569969
Category : Science
Languages : en
Pages : 276

Get Book Here

Book Description
This book focuses on the computational modeling of organometallic reactivity. In recent years, computational methods, particularly those based on Density Functional Theory (DFT) have been fully incorporated into the toolbox of organometallic chemists’ methods. Nowadays, energy profiles of multistep processes are routinely calculated, and detailed mechanistic pictures of the reactions arise from these calculations. This type of analysis is increasingly performed even by experimentalists themselves. The volume aims to connect established computational organometallics with the more recent theoretical and methodological developments applied to this field. This would allow broadening of the simulation scope toward emergent organometallic areas (as ligand design or photoactivated processes), to narrow the gap between calculations and experiments (microkinetic models) and even to discover new reactions (automated methods). Given the broad interest and extensive application that computational methods have reached within the organometallic community, this new volume will attract the interest of both experimental and computational organometallic chemists.

Theoretical Organic Chemistry

Theoretical Organic Chemistry PDF Author: C. Párkányi
Publisher: Elsevier
ISBN: 0080542727
Category : Science
Languages : en
Pages : 637

Get Book Here

Book Description
This volume is devoted to the various aspects of theoretical organic chemistry. In the nineteenth century, organic chemistry was primarily an experimental, empirical science. Throughout the twentieth century, the emphasis has been continually shifting to a more theoretical approach. Today, theoretical organic chemistry is a distinct area of research, with strong links to theoretical physical chemistry, quantum chemistry, computational chemistry, and physical organic chemistry. The objective in this volume has been to provide a cross-section of a number of interesting topics in theoretical organic chemistry, starting with a detailed account of the historical development of this discipline and including topics devoted to quantum chemistry, physical properties of organic compounds, their reactivity, their biological activity, and their excited-state properties.