Author: Slawomir Koziel
Publisher: Springer
ISBN: 3642208592
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.
Computational Optimization, Methods and Algorithms
Author: Slawomir Koziel
Publisher: Springer
ISBN: 3642208592
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.
Publisher: Springer
ISBN: 3642208592
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.
Introduction to Computational Optimization Models for Production Planning in a Supply Chain
Author: Stefan Voß
Publisher: Springer Science & Business Media
ISBN: 3540247645
Category : Business & Economics
Languages : en
Pages : 239
Book Description
An easy-to-read introduction to the concepts associated with the creation of optimization models for production planning starts off this book. These concepts are then applied to well-known planning models, namely mrp and MRP II. From this foundation, fairly sophisticated models for supply chain management are developed. Another unique feature is that models are developed with an eye toward implementation. In fact, there is a chapter that provides explicit examples of implementation of the basic models using a variety of popular, commercially available modeling languages.
Publisher: Springer Science & Business Media
ISBN: 3540247645
Category : Business & Economics
Languages : en
Pages : 239
Book Description
An easy-to-read introduction to the concepts associated with the creation of optimization models for production planning starts off this book. These concepts are then applied to well-known planning models, namely mrp and MRP II. From this foundation, fairly sophisticated models for supply chain management are developed. Another unique feature is that models are developed with an eye toward implementation. In fact, there is a chapter that provides explicit examples of implementation of the basic models using a variety of popular, commercially available modeling languages.
Computational Optimization of Internal Combustion Engines
Author: Yu Shi
Publisher: Springer Science & Business Media
ISBN: 0857296191
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
Computational Optimization of Internal Combustion Engines presents the state of the art of computational models and optimization methods for internal combustion engine development using multi-dimensional computational fluid dynamics (CFD) tools and genetic algorithms. Strategies to reduce computational cost and mesh dependency are discussed, as well as regression analysis methods. Several case studies are presented in a section devoted to applications, including assessments of: spark-ignition engines, dual-fuel engines, heavy duty and light duty diesel engines. Through regression analysis, optimization results are used to explain complex interactions between engine design parameters, such as nozzle design, injection timing, swirl, exhaust gas recirculation, bore size, and piston bowl shape. Computational Optimization of Internal Combustion Engines demonstrates that the current multi-dimensional CFD tools are mature enough for practical development of internal combustion engines. It is written for researchers and designers in mechanical engineering and the automotive industry.
Publisher: Springer Science & Business Media
ISBN: 0857296191
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
Computational Optimization of Internal Combustion Engines presents the state of the art of computational models and optimization methods for internal combustion engine development using multi-dimensional computational fluid dynamics (CFD) tools and genetic algorithms. Strategies to reduce computational cost and mesh dependency are discussed, as well as regression analysis methods. Several case studies are presented in a section devoted to applications, including assessments of: spark-ignition engines, dual-fuel engines, heavy duty and light duty diesel engines. Through regression analysis, optimization results are used to explain complex interactions between engine design parameters, such as nozzle design, injection timing, swirl, exhaust gas recirculation, bore size, and piston bowl shape. Computational Optimization of Internal Combustion Engines demonstrates that the current multi-dimensional CFD tools are mature enough for practical development of internal combustion engines. It is written for researchers and designers in mechanical engineering and the automotive industry.
Optimization and Computational Fluid Dynamics
Author: Dominique Thévenin
Publisher: Springer Science & Business Media
ISBN: 3540721533
Category : Technology & Engineering
Languages : en
Pages : 301
Book Description
The numerical optimization of practical applications has been an issue of major importance for the last 10 years. It allows us to explore reliable non-trivial configurations, differing widely from all known solutions. The purpose of this book is to introduce the state-of-the-art concerning this issue and many complementary applications are presented.
Publisher: Springer Science & Business Media
ISBN: 3540721533
Category : Technology & Engineering
Languages : en
Pages : 301
Book Description
The numerical optimization of practical applications has been an issue of major importance for the last 10 years. It allows us to explore reliable non-trivial configurations, differing widely from all known solutions. The purpose of this book is to introduce the state-of-the-art concerning this issue and many complementary applications are presented.
Handbook of Machine Learning for Computational Optimization
Author: Vishal Jain
Publisher: CRC Press
ISBN: 100045567X
Category : Business & Economics
Languages : en
Pages : 295
Book Description
Technology is moving at an exponential pace in this era of computational intelligence. Machine learning has emerged as one of the most promising tools used to challenge and think beyond current limitations. This handbook will provide readers with a leading edge to improving their products and processes through optimal and smarter machine learning techniques. This handbook focuses on new machine learning developments that can lead to newly developed applications. It uses a predictive and futuristic approach, which makes machine learning a promising tool for processes and sustainable solutions. It also promotes newer algorithms that are more efficient and reliable for new dimensions in discovering other applications, and then goes on to discuss the potential in making better use of machines in order to ensure optimal prediction, execution, and decision-making. Individuals looking for machine learning-based knowledge will find interest in this handbook. The readership ranges from undergraduate students of engineering and allied courses to researchers, professionals, and application designers.
Publisher: CRC Press
ISBN: 100045567X
Category : Business & Economics
Languages : en
Pages : 295
Book Description
Technology is moving at an exponential pace in this era of computational intelligence. Machine learning has emerged as one of the most promising tools used to challenge and think beyond current limitations. This handbook will provide readers with a leading edge to improving their products and processes through optimal and smarter machine learning techniques. This handbook focuses on new machine learning developments that can lead to newly developed applications. It uses a predictive and futuristic approach, which makes machine learning a promising tool for processes and sustainable solutions. It also promotes newer algorithms that are more efficient and reliable for new dimensions in discovering other applications, and then goes on to discuss the potential in making better use of machines in order to ensure optimal prediction, execution, and decision-making. Individuals looking for machine learning-based knowledge will find interest in this handbook. The readership ranges from undergraduate students of engineering and allied courses to researchers, professionals, and application designers.
Computational Combinatorial Optimization
Author: Michael Jünger
Publisher: Springer Science & Business Media
ISBN: 3540428771
Category : Mathematics
Languages : en
Pages : 317
Book Description
This tutorial contains written versions of seven lectures on Computational Combinatorial Optimization given by leading members of the optimization community. The lectures introduce modern combinatorial optimization techniques, with an emphasis on branch and cut algorithms and Lagrangian relaxation approaches. Polyhedral combinatorics as the mathematical backbone of successful algorithms are covered from many perspectives, in particular, polyhedral projection and lifting techniques and the importance of modeling are extensively discussed. Applications to prominent combinatorial optimization problems, e.g., in production and transport planning, are treated in many places; in particular, the book contains a state-of-the-art account of the most successful techniques for solving the traveling salesman problem to optimality.
Publisher: Springer Science & Business Media
ISBN: 3540428771
Category : Mathematics
Languages : en
Pages : 317
Book Description
This tutorial contains written versions of seven lectures on Computational Combinatorial Optimization given by leading members of the optimization community. The lectures introduce modern combinatorial optimization techniques, with an emphasis on branch and cut algorithms and Lagrangian relaxation approaches. Polyhedral combinatorics as the mathematical backbone of successful algorithms are covered from many perspectives, in particular, polyhedral projection and lifting techniques and the importance of modeling are extensively discussed. Applications to prominent combinatorial optimization problems, e.g., in production and transport planning, are treated in many places; in particular, the book contains a state-of-the-art account of the most successful techniques for solving the traveling salesman problem to optimality.
Bioinspired Computation in Combinatorial Optimization
Author: Frank Neumann
Publisher: Springer Science & Business Media
ISBN: 3642165443
Category : Mathematics
Languages : en
Pages : 215
Book Description
Bioinspired computation methods such as evolutionary algorithms and ant colony optimization are being applied successfully to complex engineering problems and to problems from combinatorial optimization, and with this comes the requirement to more fully understand the computational complexity of these search heuristics. This is the first textbook covering the most important results achieved in this area. The authors study the computational complexity of bioinspired computation and show how runtime behavior can be analyzed in a rigorous way using some of the best-known combinatorial optimization problems -- minimum spanning trees, shortest paths, maximum matching, covering and scheduling problems. A feature of the book is the separate treatment of single- and multiobjective problems, the latter a domain where the development of the underlying theory seems to be lagging practical successes. This book will be very valuable for teaching courses on bioinspired computation and combinatorial optimization. Researchers will also benefit as the presentation of the theory covers the most important developments in the field over the last 10 years. Finally, with a focus on well-studied combinatorial optimization problems rather than toy problems, the book will also be very valuable for practitioners in this field.
Publisher: Springer Science & Business Media
ISBN: 3642165443
Category : Mathematics
Languages : en
Pages : 215
Book Description
Bioinspired computation methods such as evolutionary algorithms and ant colony optimization are being applied successfully to complex engineering problems and to problems from combinatorial optimization, and with this comes the requirement to more fully understand the computational complexity of these search heuristics. This is the first textbook covering the most important results achieved in this area. The authors study the computational complexity of bioinspired computation and show how runtime behavior can be analyzed in a rigorous way using some of the best-known combinatorial optimization problems -- minimum spanning trees, shortest paths, maximum matching, covering and scheduling problems. A feature of the book is the separate treatment of single- and multiobjective problems, the latter a domain where the development of the underlying theory seems to be lagging practical successes. This book will be very valuable for teaching courses on bioinspired computation and combinatorial optimization. Researchers will also benefit as the presentation of the theory covers the most important developments in the field over the last 10 years. Finally, with a focus on well-studied combinatorial optimization problems rather than toy problems, the book will also be very valuable for practitioners in this field.
Recent Advances in Computational Optimization
Author: Stefka Fidanova
Publisher: Springer
ISBN: 3319401327
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
This volume is a comprehensive collection of extended contributions from the Workshop on Computational Optimization 2015. It presents recent advances in computational optimization. The volume includes important real life problems like parameter settings for controlling processes in bioreactor, control of ethanol production, minimal convex hill with application in routing algorithms, graph coloring, flow design in photonic data transport system, predicting indoor temperature, crisis control center monitoring, fuel consumption of helicopters, portfolio selection, GPS surveying and so on. It shows how to develop algorithms for them based on new metaheuristic methods like evolutionary computation, ant colony optimization, constrain programming and others. This research demonstrates how some real-world problems arising in engineering, economics, medicine and other domains can be formulated as optimization problems.
Publisher: Springer
ISBN: 3319401327
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
This volume is a comprehensive collection of extended contributions from the Workshop on Computational Optimization 2015. It presents recent advances in computational optimization. The volume includes important real life problems like parameter settings for controlling processes in bioreactor, control of ethanol production, minimal convex hill with application in routing algorithms, graph coloring, flow design in photonic data transport system, predicting indoor temperature, crisis control center monitoring, fuel consumption of helicopters, portfolio selection, GPS surveying and so on. It shows how to develop algorithms for them based on new metaheuristic methods like evolutionary computation, ant colony optimization, constrain programming and others. This research demonstrates how some real-world problems arising in engineering, economics, medicine and other domains can be formulated as optimization problems.
Computational Optimization in Engineering
Author: Hossein Peyvandi
Publisher: BoD – Books on Demand
ISBN: 9535130811
Category : Technology & Engineering
Languages : en
Pages : 164
Book Description
The purpose of optimization is to maximize the quality of lives, productivity in time, as well as interests. Therefore, optimization is an ongoing challenge for selecting the best possible among many other inferior designs. For a hundred years in the past, as optimization has been essential to human life, several techniques have been developed and utilized. Such a development has been one of the long-lasting challenges in engineering and science, and it is now clear that the optimization goals in many of real-life problems are unlikely to be achieved without resource for computational techniques. The history of such a development in the optimization techniques starts from the early 1950s and is still in progress. Since then, the efforts behind this development dedicated by many distinguished scientists, mathematicians, and engineers have brought us today a level of quality of lives. This book concerns with the computational optimization in engineering and techniques to resolve the underlying problems in real life. The current book contains studies from scientists and researchers around the world from North America to Europe and from Asia to Australia.
Publisher: BoD – Books on Demand
ISBN: 9535130811
Category : Technology & Engineering
Languages : en
Pages : 164
Book Description
The purpose of optimization is to maximize the quality of lives, productivity in time, as well as interests. Therefore, optimization is an ongoing challenge for selecting the best possible among many other inferior designs. For a hundred years in the past, as optimization has been essential to human life, several techniques have been developed and utilized. Such a development has been one of the long-lasting challenges in engineering and science, and it is now clear that the optimization goals in many of real-life problems are unlikely to be achieved without resource for computational techniques. The history of such a development in the optimization techniques starts from the early 1950s and is still in progress. Since then, the efforts behind this development dedicated by many distinguished scientists, mathematicians, and engineers have brought us today a level of quality of lives. This book concerns with the computational optimization in engineering and techniques to resolve the underlying problems in real life. The current book contains studies from scientists and researchers around the world from North America to Europe and from Asia to Australia.
Computational Optimization, Methods and Algorithms
Author: Slawomir Koziel
Publisher: Springer Science & Business Media
ISBN: 3642208584
Category : Computers
Languages : en
Pages : 292
Book Description
Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.
Publisher: Springer Science & Business Media
ISBN: 3642208584
Category : Computers
Languages : en
Pages : 292
Book Description
Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.