Computational Models of Visual Processing

Computational Models of Visual Processing PDF Author: Michael S. Landy
Publisher: MIT Press
ISBN: 9780262121552
Category : Medical
Languages : en
Pages : 420

Get Book Here

Book Description
The more than twenty contributions in this book, all new and previously unpublished, provide an up-to-date survey of contemporary research on computational modeling of the visual system. The approaches represented range from neurophysiology to psychophysics, and from retinal function to the analysis of visual cues to motion, color, texture, and depth. The contributions are linked thematically by a consistent consideration of the links between empirical data and computational models in the study of visual function. An introductory chapter by Edward Adelson and James Bergen gives a new and elegant formalization of the elements of early vision. Subsequent sections treat receptors and sampling, models of neural function, detection and discrimination, color and shading, motion and texture, and 3D shape. Each section is introduced by a brief topical review and summary. ContributorsEdward H. Adelson, Albert J. Ahumada, Jr., James R. Bergen, David G. Birch, David H. Brainard, Heinrich H. Bülthoff, Charles Chubb, Nancy J. Coletta, Michael D'Zmura, John P. Frisby, Norma Graham, Norberto M. Grzywacz, P. William Haake, Michael J. Hawken, David J. Heeger, Donald C. Hood, Elizabeth B. Johnston, Daniel Kersten, Michael S. Landy, Peter Lennie, J. Stephen Mansfield, J. Anthony Movshon, Jacob Nachmias, Andrew J. Parker, Denis G. Pelli, Stephen B. Pollard, R. Clay Reid, Robert Shapley, Carlo L. M. Tiana, Brian A. Wandell, Andrew B. Watson, David R. Williams, Hugh R. Wilson, Yuede. Yang, Alan L. Yuille

Computational Models of Visual Processing

Computational Models of Visual Processing PDF Author: Michael S. Landy
Publisher: MIT Press
ISBN: 9780262121552
Category : Medical
Languages : en
Pages : 420

Get Book Here

Book Description
The more than twenty contributions in this book, all new and previously unpublished, provide an up-to-date survey of contemporary research on computational modeling of the visual system. The approaches represented range from neurophysiology to psychophysics, and from retinal function to the analysis of visual cues to motion, color, texture, and depth. The contributions are linked thematically by a consistent consideration of the links between empirical data and computational models in the study of visual function. An introductory chapter by Edward Adelson and James Bergen gives a new and elegant formalization of the elements of early vision. Subsequent sections treat receptors and sampling, models of neural function, detection and discrimination, color and shading, motion and texture, and 3D shape. Each section is introduced by a brief topical review and summary. ContributorsEdward H. Adelson, Albert J. Ahumada, Jr., James R. Bergen, David G. Birch, David H. Brainard, Heinrich H. Bülthoff, Charles Chubb, Nancy J. Coletta, Michael D'Zmura, John P. Frisby, Norma Graham, Norberto M. Grzywacz, P. William Haake, Michael J. Hawken, David J. Heeger, Donald C. Hood, Elizabeth B. Johnston, Daniel Kersten, Michael S. Landy, Peter Lennie, J. Stephen Mansfield, J. Anthony Movshon, Jacob Nachmias, Andrew J. Parker, Denis G. Pelli, Stephen B. Pollard, R. Clay Reid, Robert Shapley, Carlo L. M. Tiana, Brian A. Wandell, Andrew B. Watson, David R. Williams, Hugh R. Wilson, Yuede. Yang, Alan L. Yuille

Computational Vision

Computational Vision PDF Author: Hanspeter A. Mallot
Publisher: MIT Press
ISBN: 9780262133814
Category : Medical
Languages : en
Pages : 318

Get Book Here

Book Description
This text provides an introduction to computational aspects of early vision, in particular, color, stereo, and visual navigation. It integrates approaches from psychophysics and quantitative neurobiology, as well as theories and algorithms from machine vision and photogrammetry. When presenting mathematical material, it uses detailed verbal descriptions and illustrations to clarify complex points. The text is suitable for upper-level students in neuroscience, biology, and psychology who have basic mathematical skills and are interested in studying the mathematical modeling of perception.

Computational Modeling of Vision

Computational Modeling of Vision PDF Author: William Uttal
Publisher: CRC Press
ISBN: 9780824702427
Category : Science
Languages : en
Pages : 276

Get Book Here

Book Description
Defines a unified theory of vision in which nearly independent components of visual stimuli are recombined and synthesized at high levels of neural processing to produce the richness of visual experience. The text illustrates how visual systems gather, process and reconstruct information about objects in two and three dimensions.

Handbook of Mathematical Models in Computer Vision

Handbook of Mathematical Models in Computer Vision PDF Author: Nikos Paragios
Publisher: Springer Science & Business Media
ISBN: 0387288317
Category : Computers
Languages : en
Pages : 612

Get Book Here

Book Description
Abstract Biological vision is a rather fascinating domain of research. Scientists of various origins like biology, medicine, neurophysiology, engineering, math ematics, etc. aim to understand the processes leading to visual perception process and at reproducing such systems. Understanding the environment is most of the time done through visual perception which appears to be one of the most fundamental sensory abilities in humans and therefore a significant amount of research effort has been dedicated towards modelling and repro ducing human visual abilities. Mathematical methods play a central role in this endeavour. Introduction David Marr's theory v^as a pioneering step tov^ards understanding visual percep tion. In his view human vision was based on a complete surface reconstruction of the environment that was then used to address visual subtasks. This approach was proven to be insufficient by neuro-biologists and complementary ideas from statistical pattern recognition and artificial intelligence were introduced to bet ter address the visual perception problem. In this framework visual perception is represented by a set of actions and rules connecting these actions. The emerg ing concept of active vision consists of a selective visual perception paradigm that is basically equivalent to recovering from the environment the minimal piece information required to address a particular task of interest.

Biomedical Imaging and Computational Modeling in Biomechanics

Biomedical Imaging and Computational Modeling in Biomechanics PDF Author: Ugo Andreaus
Publisher: Springer Science & Business Media
ISBN: 940074269X
Category : Technology & Engineering
Languages : en
Pages : 208

Get Book Here

Book Description
This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and biomedical imaging and computational modeling in cardiovascular disease. The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis

Camera Models and Fundamental Concepts Used in Geometric Computer Vision

Camera Models and Fundamental Concepts Used in Geometric Computer Vision PDF Author: Peter Sturm
Publisher: Now Publishers Inc
ISBN: 1601984103
Category : Computers
Languages : en
Pages : 194

Get Book Here

Book Description
Camera Models and Fundamental Concepts Used in Geometric Computer Vision surveys the image acquisition methods used in computer vision and especially, of the vast number of camera models that have been proposed and investigated over the years, and points out similarities between different models.

Understanding Vision

Understanding Vision PDF Author: Li Zhaoping
Publisher: Oxford University Press, USA
ISBN: 0199564663
Category : Medical
Languages : en
Pages : 397

Get Book Here

Book Description
Vision science has grown hugely in the past decades, but there have been few books showing readers how to adopt a computional approach to understanding visual perception, along with the underlying mechanisms in the brain. This book explains the computational principles and models of biological visual processing, and in particular, primate vision.

An Invitation to 3-D Vision

An Invitation to 3-D Vision PDF Author: Yi Ma
Publisher: Springer Science & Business Media
ISBN: 0387217797
Category : Computers
Languages : en
Pages : 542

Get Book Here

Book Description
This book introduces the geometry of 3-D vision, that is, the reconstruction of 3-D models of objects from a collection of 2-D images. It details the classic theory of two view geometry and shows that a more proper tool for studying the geometry of multiple views is the so-called rank consideration of the multiple view matrix. It also develops practical reconstruction algorithms and discusses possible extensions of the theory.

Natural Image Statistics

Natural Image Statistics PDF Author: Aapo Hyvärinen
Publisher: Springer Science & Business Media
ISBN: 1848824912
Category : Medical
Languages : en
Pages : 450

Get Book Here

Book Description
Aims and Scope This book is both an introductory textbook and a research monograph on modeling the statistical structure of natural images. In very simple terms, “natural images” are photographs of the typical environment where we live. In this book, their statistical structure is described using a number of statistical models whose parameters are estimated from image samples. Our main motivation for exploring natural image statistics is computational m- eling of biological visual systems. A theoretical framework which is gaining more and more support considers the properties of the visual system to be re?ections of the statistical structure of natural images because of evolutionary adaptation processes. Another motivation for natural image statistics research is in computer science and engineering, where it helps in development of better image processing and computer vision methods. While research on natural image statistics has been growing rapidly since the mid-1990s, no attempt has been made to cover the ?eld in a single book, providing a uni?ed view of the different models and approaches. This book attempts to do just that. Furthermore, our aim is to provide an accessible introduction to the ?eld for students in related disciplines.

Computational Models for Cognitive Vision

Computational Models for Cognitive Vision PDF Author: Hiranmay Ghosh
Publisher: John Wiley & Sons
ISBN: 1119527856
Category : Computers
Languages : en
Pages : 243

Get Book Here

Book Description
Learn how to apply cognitive principles to the problems of computer vision Computational Models for Cognitive Vision formulates the computational models for the cognitive principles found in biological vision, and applies those models to computer vision tasks. Such principles include perceptual grouping, attention, visual quality and aesthetics, knowledge-based interpretation and learning, to name a few. The author’s ultimate goal is to provide a framework for creation of a machine vision system with the capability and versatility of the human vision. Written by Dr. Hiranmay Ghosh, the book takes readers through the basic principles and the computational models for cognitive vision, Bayesian reasoning for perception and cognition, and other related topics, before establishing the relationship of cognitive vision with the multi-disciplinary field broadly referred to as “artificial intelligence”. The principles are illustrated with diverse application examples in computer vision, such as computational photography, digital heritage and social robots. The author concludes with suggestions for future research and salient observations about the state of the field of cognitive vision. Other topics covered in the book include: · knowledge representation techniques · evolution of cognitive architectures · deep learning approaches for visual cognition Undergraduate students, graduate students, engineers, and researchers interested in cognitive vision will consider this an indispensable and practical resource in the development and study of computer vision.