Computational Modeling of Inorganic Nanomaterials

Computational Modeling of Inorganic Nanomaterials PDF Author: Stefan T. Bromley
Publisher: CRC Press
ISBN: 1466576448
Category : Science
Languages : en
Pages : 429

Get Book Here

Book Description
Computational Modeling of Inorganic Nanomaterials provides an accessible, unified introduction to a variety of methods for modeling inorganic materials as their dimensions approach the nanoscale. With contributions from a team of international experts, the book guides readers on choosing the most appropriate models and methods for studying the stru

Computational Modeling of Inorganic Nanomaterials

Computational Modeling of Inorganic Nanomaterials PDF Author: Stefan T. Bromley
Publisher: CRC Press
ISBN: 1466576448
Category : Science
Languages : en
Pages : 429

Get Book Here

Book Description
Computational Modeling of Inorganic Nanomaterials provides an accessible, unified introduction to a variety of methods for modeling inorganic materials as their dimensions approach the nanoscale. With contributions from a team of international experts, the book guides readers on choosing the most appropriate models and methods for studying the stru

Computational Modelling of Nanoparticles

Computational Modelling of Nanoparticles PDF Author: Stefan T. Bromley
Publisher: Elsevier
ISBN: 0081022751
Category : Science
Languages : en
Pages : 354

Get Book Here

Book Description
Computational Modelling of Nanoparticles highlights recent advances in the power and versatility of computational modelling, experimental techniques, and how new progress has opened the door to a more detailed and comprehensive understanding of the world of nanomaterials. Nanoparticles, having dimensions of 100 nanometers or less, are increasingly being used in applications in medicine, materials and manufacturing, and energy. Spanning the smallest sub-nanometer nanoclusters to nanocrystals with diameters of 10s of nanometers, this book provides a state-of-the-art overview on how computational modelling can provide, often otherwise unobtainable, insights into nanoparticulate structure and properties. This comprehensive, single resource is ideal for researchers who want to start/improve their nanoparticle modelling efforts, learn what can be (and what cannot) achieved with computational modelling, and understand more clearly the value and details of computational modelling efforts in their area of research. - Explores how computational modelling can be successfully applied at the nanoscale level - Includes techniques for the computation modelling of different types of nanoclusters, including nanoalloy clusters, fullerines and Ligated and/or solvated nanoclusters - Offers complete coverage of the use of computational modelling at the nanoscale, from characterization and processing, to applications

Photoactive Inorganic Nanoparticles

Photoactive Inorganic Nanoparticles PDF Author: Julia Pérez Prieto
Publisher: Elsevier
ISBN: 0128145323
Category : Technology & Engineering
Languages : en
Pages : 286

Get Book Here

Book Description
Nanoparticles are usually designed for specific applications and selection of the most convenient capping can be a complex task, but is crucial for successful design. In this volume, the authors discuss the selection of functional cappings to coat nanoparticles in a range of different applications. The opening chapter provides an understanding of basic aspects of surface chemistry at the nanoscale. Each following chapter covers a particular kind of capping, beginning with a basic introduction and describing characteristics such as structure, functionality, solubility, (photo)physics, and toxicity. Special emphasis is placed on how important these specific features are in the preparation of smart nanomaterials. In-depth explanations and examples are then presented, highlighting the latest results and cutting-edge research carried out with the selected capping according to the kind of nanoparticle employed (such as rare-earth doped, semiconducting, and metallic). An additional chapter focusses on computational techniques for modelling nanosurfaces. Photoactive Inorganic Nanoparticles: Surface Composition and its Role in Nanosystem Functionality will be a valuable working resource for graduate students, researchers, and industry R&D professionals working in the field of applied nanomaterials. - Aids selection of the best functional cappings for particular applications - Covers a broad range of application areas, including medical, biological and materials science - Provides material on computational techniques for modeling nanosurfaces

Photoactive Inorganic Nanoparticles

Photoactive Inorganic Nanoparticles PDF Author: Julia Pérez Prieto
Publisher: Elsevier
ISBN: 9780128145319
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
Nanoparticles are usually designed for specific applications and selection of the most convenient capping can be a complex task, but is crucial for successful design. In this volume, the authors discuss the selection of functional cappings to coat nanoparticles in a range of different applications. The opening chapter provides an understanding of basic aspects of surface chemistry at the nanoscale. Each following chapter covers a particular kind of capping, beginning with a basic introduction and describing characteristics such as structure, functionality, solubility, (photo)physics, and toxicity. Special emphasis is placed on how important these specific features are in the preparation of smart nanomaterials. In-depth explanations and examples are then presented, highlighting the latest results and cutting-edge research carried out with the selected capping according to the kind of nanoparticle employed (such as rare-earth doped, semiconducting, and metallic). An additional chapter focusses on computational techniques for modelling nanosurfaces. Photoactive Inorganic Nanoparticles: Surface Composition and its Role in Nanosystem Functionality will be a valuable working resource for graduate students, researchers, and industry R&D professionals working in the field of applied nanomaterials.

Computational Modelling of Nanomaterials

Computational Modelling of Nanomaterials PDF Author: Panagiotis Grammatikopoulos
Publisher: Elsevier
ISBN: 0128214988
Category : Technology & Engineering
Languages : en
Pages : 246

Get Book Here

Book Description
Due to their small size and their dependence on very fast phenomena, nanomaterials are ideal systems for computational modelling. This book provides an overview of various nanosystems classified by their dimensions: 0D (nanoparticles, QDs, etc.), 1D (nanowires, nanotubes), 2D (thin films, graphene, etc.), 3D (nanostructured bulk materials, devices). Fractal dimensions, such as nanoparticle agglomerates, percolating films and combinations of materials of different dimensionalities are also covered (e.g. epitaxial decoration of nanowires by nanoparticles, i.e. 0D+1D nanomaterials). For each class, the focus will be on growth, structure, and physical/chemical properties. The book presents a broad range of techniques, including density functional theory, molecular dynamics, non-equilibrium molecular dynamics, finite element modelling (FEM), numerical modelling and meso-scale modelling. The focus is on each method's relevance and suitability for the study of materials and phenomena in the nanoscale. This book is an important resource for understanding the mechanisms behind basic properties of nanomaterials, and the major techniques for computational modelling of nanomaterials. - Explores the major modelling techniques used for different classes of nanomaterial - Assesses the best modelling technique to use for each different type of nanomaterials - Discusses the challenges of using certain modelling techniques with specific nanomaterials

Computational Nanotoxicology

Computational Nanotoxicology PDF Author: Agnieszka Gajewicz
Publisher: CRC Press
ISBN: 1000681424
Category : Medical
Languages : en
Pages : 307

Get Book Here

Book Description
The development of computational methods that support human health and environmental risk assessment of engineered nanomaterials has attracted great interest because the application of these methods enables us to fill existing experimental data gaps. However, considering the high degree of complexity and multifunctionality of engineered nanoparticles, computational methods originally developed for regular (i.e., classic) chemicals cannot always be applied explicitly in nanotoxicology. Thus, the main idea of this book is to discuss the current state of the art and future needs in the development of computational modeling techniques for nanotoxicology. The book focuses on methodology. Among various in silico techniques, special attention is given to (i) computational chemistry (quantum mechanics, semi-empirical methods, density functional theory, molecular mechanics, molecular dynamics); (ii) nanochemoinformatic methods (quantitative structure–activity relationship modeling, grouping, read-across); and (iii) nanobioinformatic methods (genomics, transcriptomics, proteomics, metabolomics).

Molecular Modelling and Synthesis of Nanomaterials

Molecular Modelling and Synthesis of Nanomaterials PDF Author: Ihsan Boustani
Publisher: Springer Nature
ISBN: 3030327264
Category : Technology & Engineering
Languages : en
Pages : 598

Get Book Here

Book Description
This book presents nanomaterials as predicted by computational modelling and numerical simulation tools, and confirmed by modern experimental techniques. It begins by summarizing basic theoretical methods, then giving both a theoretical and experimental treatment of how alkali metal clusters develop into nanostructures, as influenced by the cluster's "magic number" of atoms. The book continues with a discussion of atomic clusters and nanostructures, focusing primarily on boron and carbon, exploring, in detail, the one-, two-, and three-dimensional structures of boron and carbon, and describing their myriad potential applications in nanotechnology, from nanocoating and nanosensing to nanobatteries with high borophene capacity. The broad discussion of computational modelling as well as the specific applications to boron and carbon, make this book an essential reference resource for materials scientists in this field of research.

Skyrmions

Skyrmions PDF Author: J. Ping Liu
Publisher: CRC Press
ISBN: 1315284162
Category : Science
Languages : en
Pages : 502

Get Book Here

Book Description
"The book reviews all the aspects of recent developments in research on skyrmions, from the presentation of the observation and characterization techniques to the description of physical properties and expected applications. It will be of great use for all scientists working in this field." – Albert Fert, 2007 Nobel Laureate in Physics (from the Foreword) A skyrmion is a tiny region of reversed magnetization – quasiparticles since they are not present except in a magnetic state, and also give rise to physics that cannot be described by Maxwell’s equations. These particles are fascinating subjects for theoretical and experimental studies. Moreover, as a new type of magnetic domain structure with special topological structures, skyrmions feature outstanding magnetic and transport properties and may well have applications in data storage and other advanced spintronic devices, as readers will see in this book. Chapters address the relationships between physical properties of condensed matter, such as the AB effect, Berry phase effect, quantum Hall effect, and topological insulators. Overall, it provides a timely introduction to the fundamental aspects and possible applications of magnetic skyrmions to an interdisciplinary audience from condensed matter physics, chemistry, and materials science.

Multiferroic Materials

Multiferroic Materials PDF Author: Junling Wang
Publisher: CRC Press
ISBN: 148225154X
Category : Science
Languages : en
Pages : 409

Get Book Here

Book Description
"a very detailed book on multiferroics that will be useful for PhD students and researchers interested in this emerging field of materials science" —Dr. Wilfrid Prellier, Research Director, CNRS, Caen, France Multiferroics has emerged as one of the hottest topics in solid state physics in this millennium. The coexistence of multiple ferroic/antiferroic properties makes them useful both for fundamental studies and practical applications such as revolutionary new memory technologies and next-generation spintronics devices. This book provides an historical introduction to the field, followed by a summary of recent progress in single-phase multiferroics (type-I and type-II), multiferroic composites (bulk and nano composites), and emerging areas such as domain walls and vortices. Each chapter addresses potential technological implications. There is also a section dedicated to theoretical approaches, both phenomenological and first-principles calculations.

Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials

Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1799887367
Category : Technology & Engineering
Languages : en
Pages : 1917

Get Book Here

Book Description
The use of nanotechnologies continues to grow, as nanomaterials have proven their versatility and use in many different fields and industries within the scientific profession. Using nanotechnology, materials can be made lighter, more durable, more reactive, and more efficient leading nanoscale materials to enhance many everyday products and processes. With many different sizes, shapes, and internal structures, the applications are endless. These uses range from pharmaceutics to materials such as cement or cloth, electronics, environmental sustainability, and more. Therefore, there has been a recent surge of research focused on the synthesis and characterizations of these nanomaterials to better understand how they can be used, their applications, and the many different types. The Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials seeks to address not only how nanomaterials are created, used, or characterized, but also to apply this knowledge to the multidimensional industries, fields, and applications of nanomaterials and nanoscience. This includes topics such as both natural and manmade nanomaterials; the size, shape, reactivity, and other essential characteristics of nanomaterials; challenges and potential effects of using nanomaterials; and the advantages of nanomaterials with multidisciplinary uses. This book is ideally designed for researchers, engineers, practitioners, industrialists, educators, strategists, policymakers, scientists, and students working in fields that include materials engineering, engineering science, nanotechnology, biotechnology, microbiology, drug design and delivery, medicine, and more.