Principles of Computational Modelling in Neuroscience

Principles of Computational Modelling in Neuroscience PDF Author: David Sterratt
Publisher: Cambridge University Press
ISBN: 1108483143
Category : Science
Languages : en
Pages : 553

Get Book Here

Book Description
Learn to use computational modelling techniques to understand the nervous system at all levels, from ion channels to networks.

Computational Modeling in Cognition

Computational Modeling in Cognition PDF Author: Stephan Lewandowsky
Publisher: SAGE
ISBN: 1452236194
Category : Psychology
Languages : en
Pages : 377

Get Book Here

Book Description
An accessible introduction to the principles of computational and mathematical modeling in psychology and cognitive science This practical and readable work provides students and researchers, who are new to cognitive modeling, with the background and core knowledge they need to interpret published reports, and develop and apply models of their own. The book is structured to help readers understand the logic of individual component techniques and their relationships to each other.

Computational Modeling of Cognition and Behavior

Computational Modeling of Cognition and Behavior PDF Author: Simon Farrell
Publisher: Cambridge University Press
ISBN: 110710999X
Category : Psychology
Languages : en
Pages : 485

Get Book Here

Book Description
This book presents an integrated framework for developing and testing computational models in psychology and related disciplines. Researchers and students are given the knowledge and tools to interpret models published in their area, as well as to develop, fit, and test their own models.

Computational Modeling

Computational Modeling PDF Author: Gregory Rago
Publisher:
ISBN: 9781682850695
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
Computer-based simulation is one of the most preferred methods of studying a system today. The primary goal of this book is to collaborate the latest research in this discipline. The topics included in this book on computational modeling are elaborate discussions on many applications of computational modeling, such as three dimensional technology, fuzzy logic, cloud computing, visualization, virtual machines, etc. which are of utmost significance and are bound to provide incredible insights to readers. This book will be an apt reference for a wide variety of readers including students, researchers and academicians.

Artificial Intelligence for Computational Modeling of the Heart

Artificial Intelligence for Computational Modeling of the Heart PDF Author: Tommaso Mansi
Publisher: Academic Press
ISBN: 012817594X
Category : Science
Languages : en
Pages : 274

Get Book Here

Book Description
Artificial Intelligence for Computational Modeling of the Heart presents recent research developments towards streamlined and automatic estimation of the digital twin of a patient's heart by combining computational modeling of heart physiology and artificial intelligence. The book first introduces the major aspects of multi-scale modeling of the heart, along with the compromises needed to achieve subject-specific simulations. Reader will then learn how AI technologies can unlock robust estimations of cardiac anatomy, obtain meta-models for real-time biophysical computations, and estimate model parameters from routine clinical data. Concepts are all illustrated through concrete clinical applications.

Computational Modeling And Simulations Of Biomolecular Systems

Computational Modeling And Simulations Of Biomolecular Systems PDF Author: Benoit Roux
Publisher: World Scientific
ISBN: 9811232776
Category : Computers
Languages : en
Pages : 209

Get Book Here

Book Description
This textbook originated from the course 'Simulation, Modeling, and Computations in Biophysics' that I have taught at the University of Chicago since 2011. The students typically came from a wide range of backgrounds, including biology, physics, chemistry, biochemistry, and mathematics, and the course was intentionally adapted for senior undergraduate students and graduate students. This is not a highly technical book dedicated to specialists. The objective is to provide a broad survey from the physical description of a complex molecular system at the most fundamental level, to the type of phenomenological models commonly used to represent the function of large biological macromolecular machines.The key conceptual elements serving as building blocks in the formulation of different levels of approximations are introduced along the way, aiming to clarify as much as possible how they are interrelated. The only assumption is a basic familiarity with simple mathematics (calculus and integrals, ordinary differential equations, matrix linear algebra, and Fourier-Laplace transforms).

Introduction to Elementary Computational Modeling

Introduction to Elementary Computational Modeling PDF Author: Jose Garrido
Publisher: CRC Press
ISBN: 1439867399
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
With an emphasis on problem solving, this book introduces the basic principles and fundamental concepts of computational modeling. It emphasizes reasoning and conceptualizing problems, the elementary mathematical modeling, and the implementation using computing concepts and principles. Examples are included that demonstrate the computation and visualization of the implemented models. The author provides case studies, along with an overview of computational models and their development. The first part of the text presents the basic concepts of models and techniques for designing and implementing problem solutions. It applies standard pseudo-code constructs and flowcharts for designing models. The second part covers model implementation with basic programming constructs using MATLAB®, Octave, and FreeMat. Aimed at beginning students in computer science, mathematics, statistics, and engineering, Introduction to Elementary Computational Modeling: Essential Concepts, Principles, and Problem Solving focuses on fundamentals, helping the next generation of scientists and engineers hone their problem solving skills.

Computational Modeling Methods for Neuroscientists

Computational Modeling Methods for Neuroscientists PDF Author: Erik De Schutter
Publisher: National Geographic Books
ISBN: 0262013274
Category : Medical
Languages : en
Pages : 0

Get Book Here

Book Description
A guide to computational modeling methods in neuroscience, covering a range of modeling scales from molecular reactions to large neural networks. This book offers an introduction to current methods in computational modeling in neuroscience. The book describes realistic modeling methods at levels of complexity ranging from molecular interactions to large neural networks. A “how to” book rather than an analytical account, it focuses on the presentation of methodological approaches, including the selection of the appropriate method and its potential pitfalls. It is intended for experimental neuroscientists and graduate students who have little formal training in mathematical methods, but it will also be useful for scientists with theoretical backgrounds who want to start using data-driven modeling methods. The mathematics needed are kept to an introductory level; the first chapter explains the mathematical methods the reader needs to master to understand the rest of the book. The chapters are written by scientists who have successfully integrated data-driven modeling with experimental work, so all of the material is accessible to experimentalists. The chapters offer comprehensive coverage with little overlap and extensive cross-references, moving from basic building blocks to more complex applications. Contributors Pablo Achard, Haroon Anwar, Upinder S. Bhalla, Michiel Berends, Nicolas Brunel, Ronald L. Calabrese, Brenda Claiborne, Hugo Cornelis, Erik De Schutter, Alain Destexhe, Bard Ermentrout, Kristen Harris, Sean Hill, John R. Huguenard, William R. Holmes, Gwen Jacobs, Gwendal LeMasson, Henry Markram, Reinoud Maex, Astrid A. Prinz, Imad Riachi, John Rinzel, Arnd Roth, Felix Schürmann, Werner Van Geit, Mark C. W. van Rossum, Stefan Wils

Computational Cognitive Modeling and Linguistic Theory

Computational Cognitive Modeling and Linguistic Theory PDF Author: Adrian Brasoveanu
Publisher: Springer Nature
ISBN: 303031846X
Category : Language and languages
Languages : en
Pages : 299

Get Book Here

Book Description
This open access book introduces a general framework that allows natural language researchers to enhance existing competence theories with fully specified performance and processing components. Gradually developing increasingly complex and cognitively realistic competence-performance models, it provides running code for these models and shows how to fit them to real-time experimental data. This computational cognitive modeling approach opens up exciting new directions for research in formal semantics, and linguistics more generally, and offers new ways of (re)connecting semantics and the broader field of cognitive science. The approach of this book is novel in more ways than one. Assuming the mental architecture and procedural modalities of Anderson's ACT-R framework, it presents fine-grained computational models of human language processing tasks which make detailed quantitative predictions that can be checked against the results of self-paced reading and other psycho-linguistic experiments. All models are presented as computer programs that readers can run on their own computer and on inputs of their choice, thereby learning to design, program and run their own models. But even for readers who won't do all that, the book will show how such detailed, quantitatively predicting modeling of linguistic processes is possible. A methodological breakthrough and a must for anyone concerned about the future of linguistics! (Hans Kamp) This book constitutes a major step forward in linguistics and psycholinguistics. It constitutes a unique synthesis of several different research traditions: computational models of psycholinguistic processes, and formal models of semantics and discourse processing. The work also introduces a sophisticated python-based software environment for modeling linguistic processes. This book has the potential to revolutionize not only formal models of linguistics, but also models of language processing more generally. (Shravan Vasishth) .

Computational Modeling in Tissue Engineering

Computational Modeling in Tissue Engineering PDF Author: Liesbet Geris
Publisher: Springer Science & Business Media
ISBN: 3642325637
Category : Technology & Engineering
Languages : en
Pages : 438

Get Book Here

Book Description
One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in: (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each of the above mentioned areas of computational modeling. The underlying tissue engineering applications will vary from blood vessels over trachea to cartilage and bone. For the chapters describing examples of the first two areas, the main focus is on (the optimization of) mechanical signals, mass transport and fluid flow encountered by the cells in scaffolds and bioreactors as well as on the optimization of the cell population itself. In the chapters describing modeling contributions in the third area, the focus will shift towards the biology, the complex interactions between biology and the micro-environmental signals and the ways in which modeling might be able to assist in investigating and mastering this complexity. The chapters cover issues related to (multiscale/multiphysics) model building, training and validation, but also discuss recent advances in scientific computing techniques that are needed to implement these models as well as new tools that can be used to experimentally validate the computational results.