Author: Ting Yu
Publisher: CRC Press
ISBN: 1439895953
Category : Business & Economics
Languages : en
Pages : 443
Book Description
Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development present
Computational Intelligent Data Analysis for Sustainable Development
Author: Ting Yu
Publisher: CRC Press
ISBN: 1439895953
Category : Business & Economics
Languages : en
Pages : 443
Book Description
Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development present
Publisher: CRC Press
ISBN: 1439895953
Category : Business & Economics
Languages : en
Pages : 443
Book Description
Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development present
Intelligent Data Analysis
Author: Michael R. Berthold
Publisher: Springer
ISBN: 3540486259
Category : Computers
Languages : en
Pages : 515
Book Description
This second and revised edition contains a detailed introduction to the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues. The following chapters concentrate on machine learning and artificial intelligence, rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on visualization and an advanced overview of IDA processes.
Publisher: Springer
ISBN: 3540486259
Category : Computers
Languages : en
Pages : 515
Book Description
This second and revised edition contains a detailed introduction to the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues. The following chapters concentrate on machine learning and artificial intelligence, rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on visualization and an advanced overview of IDA processes.
Intelligent Data Analysis
Author: Deepak Gupta
Publisher: John Wiley & Sons
ISBN: 1119544459
Category : Technology & Engineering
Languages : en
Pages : 428
Book Description
This book focuses on methods and tools for intelligent data analysis, aimed at narrowing the increasing gap between data gathering and data comprehension, and emphasis will also be given to solving of problems which result from automated data collection, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and so on. This book aims to describe the different approaches of Intelligent Data Analysis from a practical point of view: solving common life problems with data analysis tools.
Publisher: John Wiley & Sons
ISBN: 1119544459
Category : Technology & Engineering
Languages : en
Pages : 428
Book Description
This book focuses on methods and tools for intelligent data analysis, aimed at narrowing the increasing gap between data gathering and data comprehension, and emphasis will also be given to solving of problems which result from automated data collection, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and so on. This book aims to describe the different approaches of Intelligent Data Analysis from a practical point of view: solving common life problems with data analysis tools.
Computational Intelligence in Intelligent Data Analysis
Author: Christian Moewes
Publisher: Springer
ISBN: 3642323782
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
Complex systems and their phenomena are ubiquitous as they can be found in biology, finance, the humanities, management sciences, medicine, physics and similar fields. For many problems in these fields, there are no conventional ways to mathematically or analytically solve them completely at low cost. On the other hand, nature already solved many optimization problems efficiently. Computational intelligence attempts to mimic nature-inspired problem-solving strategies and methods. These strategies can be used to study, model and analyze complex systems such that it becomes feasible to handle them. Key areas of computational intelligence are artificial neural networks, evolutionary computation and fuzzy systems. As only a few researchers in that field, Rudolf Kruse has contributed in many important ways to the understanding, modeling and application of computational intelligence methods. On occasion of his 60th birthday, a collection of original papers of leading researchers in the field of computational intelligence has been collected in this volume.
Publisher: Springer
ISBN: 3642323782
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
Complex systems and their phenomena are ubiquitous as they can be found in biology, finance, the humanities, management sciences, medicine, physics and similar fields. For many problems in these fields, there are no conventional ways to mathematically or analytically solve them completely at low cost. On the other hand, nature already solved many optimization problems efficiently. Computational intelligence attempts to mimic nature-inspired problem-solving strategies and methods. These strategies can be used to study, model and analyze complex systems such that it becomes feasible to handle them. Key areas of computational intelligence are artificial neural networks, evolutionary computation and fuzzy systems. As only a few researchers in that field, Rudolf Kruse has contributed in many important ways to the understanding, modeling and application of computational intelligence methods. On occasion of his 60th birthday, a collection of original papers of leading researchers in the field of computational intelligence has been collected in this volume.
Guide to Intelligent Data Analysis
Author: Michael R. Berthold
Publisher: Springer Science & Business Media
ISBN: 184882260X
Category : Computers
Languages : en
Pages : 399
Book Description
Each passing year bears witness to the development of ever more powerful computers, increasingly fast and cheap storage media, and even higher bandwidth data connections. This makes it easy to believe that we can now – at least in principle – solve any problem we are faced with so long as we only have enough data. Yet this is not the case. Although large databases allow us to retrieve many different single pieces of information and to compute simple aggregations, general patterns and regularities often go undetected. Furthermore, it is exactly these patterns, regularities and trends that are often most valuable. To avoid the danger of “drowning in information, but starving for knowledge” the branch of research known as data analysis has emerged, and a considerable number of methods and software tools have been developed. However, it is not these tools alone but the intelligent application of human intuition in combination with computational power, of sound background knowledge with computer-aided modeling, and of critical reflection with convenient automatic model construction, that results in successful intelligent data analysis projects. Guide to Intelligent Data Analysis provides a hands-on instructional approach to many basic data analysis techniques, and explains how these are used to solve data analysis problems. Topics and features: guides the reader through the process of data analysis, following the interdependent steps of project understanding, data understanding, data preparation, modeling, and deployment and monitoring; equips the reader with the necessary information in order to obtain hands-on experience of the topics under discussion; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; includes numerous examples using R and KNIME, together with appendices introducing the open source software; integrates illustrations and case-study-style examples to support pedagogical exposition. This practical and systematic textbook/reference for graduate and advanced undergraduate students is also essential reading for all professionals who face data analysis problems. Moreover, it is a book to be used following one’s exploration of it. Dr. Michael R. Berthold is Nycomed-Professor of Bioinformatics and Information Mining at the University of Konstanz, Germany. Dr. Christian Borgelt is Principal Researcher at the Intelligent Data Analysis and Graphical Models Research Unit of the European Centre for Soft Computing, Spain. Dr. Frank Höppner is Professor of Information Systems at Ostfalia University of Applied Sciences, Germany. Dr. Frank Klawonn is a Professor in the Department of Computer Science and Head of the Data Analysis and Pattern Recognition Laboratory at Ostfalia University of Applied Sciences, Germany. He is also Head of the Bioinformatics and Statistics group at the Helmholtz Centre for Infection Research, Braunschweig, Germany.
Publisher: Springer Science & Business Media
ISBN: 184882260X
Category : Computers
Languages : en
Pages : 399
Book Description
Each passing year bears witness to the development of ever more powerful computers, increasingly fast and cheap storage media, and even higher bandwidth data connections. This makes it easy to believe that we can now – at least in principle – solve any problem we are faced with so long as we only have enough data. Yet this is not the case. Although large databases allow us to retrieve many different single pieces of information and to compute simple aggregations, general patterns and regularities often go undetected. Furthermore, it is exactly these patterns, regularities and trends that are often most valuable. To avoid the danger of “drowning in information, but starving for knowledge” the branch of research known as data analysis has emerged, and a considerable number of methods and software tools have been developed. However, it is not these tools alone but the intelligent application of human intuition in combination with computational power, of sound background knowledge with computer-aided modeling, and of critical reflection with convenient automatic model construction, that results in successful intelligent data analysis projects. Guide to Intelligent Data Analysis provides a hands-on instructional approach to many basic data analysis techniques, and explains how these are used to solve data analysis problems. Topics and features: guides the reader through the process of data analysis, following the interdependent steps of project understanding, data understanding, data preparation, modeling, and deployment and monitoring; equips the reader with the necessary information in order to obtain hands-on experience of the topics under discussion; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; includes numerous examples using R and KNIME, together with appendices introducing the open source software; integrates illustrations and case-study-style examples to support pedagogical exposition. This practical and systematic textbook/reference for graduate and advanced undergraduate students is also essential reading for all professionals who face data analysis problems. Moreover, it is a book to be used following one’s exploration of it. Dr. Michael R. Berthold is Nycomed-Professor of Bioinformatics and Information Mining at the University of Konstanz, Germany. Dr. Christian Borgelt is Principal Researcher at the Intelligent Data Analysis and Graphical Models Research Unit of the European Centre for Soft Computing, Spain. Dr. Frank Höppner is Professor of Information Systems at Ostfalia University of Applied Sciences, Germany. Dr. Frank Klawonn is a Professor in the Department of Computer Science and Head of the Data Analysis and Pattern Recognition Laboratory at Ostfalia University of Applied Sciences, Germany. He is also Head of the Bioinformatics and Statistics group at the Helmholtz Centre for Infection Research, Braunschweig, Germany.
Machine Intelligence and Data Analytics for Sustainable Future Smart Cities
Author: Uttam Ghosh
Publisher: Springer Nature
ISBN: 3030720659
Category : Technology & Engineering
Languages : en
Pages : 413
Book Description
This book presents the latest advances in computational intelligence and data analytics for sustainable future smart cities. It focuses on computational intelligence and data analytics to bring together the smart city and sustainable city endeavors. It also discusses new models, practical solutions and technological advances related to the development and the transformation of cities through machine intelligence and big data models and techniques. This book is helpful for students and researchers as well as practitioners.
Publisher: Springer Nature
ISBN: 3030720659
Category : Technology & Engineering
Languages : en
Pages : 413
Book Description
This book presents the latest advances in computational intelligence and data analytics for sustainable future smart cities. It focuses on computational intelligence and data analytics to bring together the smart city and sustainable city endeavors. It also discusses new models, practical solutions and technological advances related to the development and the transformation of cities through machine intelligence and big data models and techniques. This book is helpful for students and researchers as well as practitioners.
Guide to Intelligent Data Science
Author: Michael R. Berthold
Publisher: Springer Nature
ISBN: 3030455742
Category : Computers
Languages : en
Pages : 427
Book Description
Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring; includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; integrates illustrations and case-study-style examples to support pedagogical exposition; supplies further tools and information at an associated website. This practical and systematic textbook/reference is a “need-to-have” tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a “need to use, need to keep” resource following one's exploration of the subject.
Publisher: Springer Nature
ISBN: 3030455742
Category : Computers
Languages : en
Pages : 427
Book Description
Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring; includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; integrates illustrations and case-study-style examples to support pedagogical exposition; supplies further tools and information at an associated website. This practical and systematic textbook/reference is a “need-to-have” tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a “need to use, need to keep” resource following one's exploration of the subject.
Computational Intelligence
Author: Rudolf Kruse
Publisher: Springer
ISBN: 1447172965
Category : Computers
Languages : en
Pages : 556
Book Description
This textbook provides a clear and logical introduction to the field, covering the fundamental concepts, algorithms and practical implementations behind efforts to develop systems that exhibit intelligent behavior in complex environments. This enhanced second edition has been fully revised and expanded with new content on swarm intelligence, deep learning, fuzzy data analysis, and discrete decision graphs. Features: provides supplementary material at an associated website; contains numerous classroom-tested examples and definitions throughout the text; presents useful insights into all that is necessary for the successful application of computational intelligence methods; explains the theoretical background underpinning proposed solutions to common problems; discusses in great detail the classical areas of artificial neural networks, fuzzy systems and evolutionary algorithms; reviews the latest developments in the field, covering such topics as ant colony optimization and probabilistic graphical models.
Publisher: Springer
ISBN: 1447172965
Category : Computers
Languages : en
Pages : 556
Book Description
This textbook provides a clear and logical introduction to the field, covering the fundamental concepts, algorithms and practical implementations behind efforts to develop systems that exhibit intelligent behavior in complex environments. This enhanced second edition has been fully revised and expanded with new content on swarm intelligence, deep learning, fuzzy data analysis, and discrete decision graphs. Features: provides supplementary material at an associated website; contains numerous classroom-tested examples and definitions throughout the text; presents useful insights into all that is necessary for the successful application of computational intelligence methods; explains the theoretical background underpinning proposed solutions to common problems; discusses in great detail the classical areas of artificial neural networks, fuzzy systems and evolutionary algorithms; reviews the latest developments in the field, covering such topics as ant colony optimization and probabilistic graphical models.
International Conference on Intelligent and Smart Computing in Data Analytics
Author: Siddhartha Bhattacharyya
Publisher: Springer Nature
ISBN: 981336176X
Category : Technology & Engineering
Languages : en
Pages : 301
Book Description
This book is a collection of best selected research papers presented at International Conference on Intelligent and Smart Computing in Data Analytics (ISCDA 2020), held at K L University, Guntur, Andhra Pradesh, India. The primary focus is to address issues and developments in advanced computing, intelligent models and applications, smart technologies and applications. It includes topics such as artificial intelligence and machine learning, pattern recognition and analysis, computational intelligence, signal and image processing, bioinformatics, ubiquitous computing, genetic fuzzy systems, hybrid evolutionary algorithms, nature-inspired smart hybrid systems, Internet of things, industrial IoT, health informatics, human–computer interaction and social network analysis. The book presents innovative work by leading academics, researchers and experts from industry.
Publisher: Springer Nature
ISBN: 981336176X
Category : Technology & Engineering
Languages : en
Pages : 301
Book Description
This book is a collection of best selected research papers presented at International Conference on Intelligent and Smart Computing in Data Analytics (ISCDA 2020), held at K L University, Guntur, Andhra Pradesh, India. The primary focus is to address issues and developments in advanced computing, intelligent models and applications, smart technologies and applications. It includes topics such as artificial intelligence and machine learning, pattern recognition and analysis, computational intelligence, signal and image processing, bioinformatics, ubiquitous computing, genetic fuzzy systems, hybrid evolutionary algorithms, nature-inspired smart hybrid systems, Internet of things, industrial IoT, health informatics, human–computer interaction and social network analysis. The book presents innovative work by leading academics, researchers and experts from industry.
Intelligent Data Mining
Author: Da Ruan
Publisher: Springer
ISBN: 9783540812043
Category : Mathematics
Languages : en
Pages : 518
Book Description
"Intelligent Data Mining – Techniques and Applications" is an organized edited collection of contributed chapters covering basic knowledge for intelligent systems and data mining, applications in economic and management, industrial engineering and other related industrial applications. The main objective of this book is to gather a number of peer-reviewed high quality contributions in the relevant topic areas. The focus is especially on those chapters that provide theoretical/analytical solutions to the problems of real interest in intelligent techniques possibly combined with other traditional tools, for data mining and the corresponding applications to engineers and managers of different industrial sectors. Academic and applied researchers and research students working on data mining can also directly benefit from this book.
Publisher: Springer
ISBN: 9783540812043
Category : Mathematics
Languages : en
Pages : 518
Book Description
"Intelligent Data Mining – Techniques and Applications" is an organized edited collection of contributed chapters covering basic knowledge for intelligent systems and data mining, applications in economic and management, industrial engineering and other related industrial applications. The main objective of this book is to gather a number of peer-reviewed high quality contributions in the relevant topic areas. The focus is especially on those chapters that provide theoretical/analytical solutions to the problems of real interest in intelligent techniques possibly combined with other traditional tools, for data mining and the corresponding applications to engineers and managers of different industrial sectors. Academic and applied researchers and research students working on data mining can also directly benefit from this book.