Computational Genomics with R

Computational Genomics with R PDF Author: Altuna Akalin
Publisher: CRC Press
ISBN: 1498781861
Category : Mathematics
Languages : en
Pages : 463

Get Book Here

Book Description
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.

Computational Genomics with R

Computational Genomics with R PDF Author: Altuna Akalin
Publisher: CRC Press
ISBN: 1498781861
Category : Mathematics
Languages : en
Pages : 463

Get Book Here

Book Description
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.

Computational Genomics with R

Computational Genomics with R PDF Author: Altuna Akalin
Publisher: CRC Press
ISBN: 9780367634605
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This book has fundamental theoretical and practical aspects of data analysis, useful for beginners and experienced researchers that are looking for a recipe or an analysis approach. Since R has many packages, even experienced researchers look for how particular functions are used in an analysis workflow.

Computational Genomics with R

Computational Genomics with R PDF Author: Altuna Akalin
Publisher: Chapman & Hall/CRC Computational Biology Series
ISBN: 9781498781855
Category :
Languages : en
Pages : 462

Get Book Here

Book Description
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.

Population Genomics with R

Population Genomics with R PDF Author: Emmanuel Paradis
Publisher: CRC Press
ISBN: 0429882424
Category : Mathematics
Languages : en
Pages : 326

Get Book Here

Book Description
Population Genomics With R presents a multidisciplinary approach to the analysis of population genomics. The methods treated cover a large number of topics from traditional population genetics to large-scale genomics with high-throughput sequencing data. Several dozen R packages are examined and integrated to provide a coherent software environment with a wide range of computational, statistical, and graphical tools. Small examples are used to illustrate the basics and published data are used as case studies. Readers are expected to have a basic knowledge of biology, genetics, and statistical inference methods. Graduate students and post-doctorate researchers will find resources to analyze their population genetic and genomic data as well as help them design new studies. The first four chapters review the basics of population genomics, data acquisition, and the use of R to store and manipulate genomic data. Chapter 5 treats the exploration of genomic data, an important issue when analysing large data sets. The other five chapters cover linkage disequilibrium, population genomic structure, geographical structure, past demographic events, and natural selection. These chapters include supervised and unsupervised methods, admixture analysis, an in-depth treatment of multivariate methods, and advice on how to handle GIS data. The analysis of natural selection, a traditional issue in evolutionary biology, has known a revival with modern population genomic data. All chapters include exercises. Supplemental materials are available on-line (http://ape-package.ird.fr/PGR.html).

Primer to Analysis of Genomic Data Using R

Primer to Analysis of Genomic Data Using R PDF Author: Cedric Gondro
Publisher: Springer
ISBN: 3319144758
Category : Medical
Languages : en
Pages : 283

Get Book Here

Book Description
Through this book, researchers and students will learn to use R for analysis of large-scale genomic data and how to create routines to automate analytical steps. The philosophy behind the book is to start with real world raw datasets and perform all the analytical steps needed to reach final results. Though theory plays an important role, this is a practical book for graduate and undergraduate courses in bioinformatics and genomic analysis or for use in lab sessions. How to handle and manage high-throughput genomic data, create automated workflows and speed up analyses in R is also taught. A wide range of R packages useful for working with genomic data are illustrated with practical examples. The key topics covered are association studies, genomic prediction, estimation of population genetic parameters and diversity, gene expression analysis, functional annotation of results using publically available databases and how to work efficiently in R with large genomic datasets. Important principles are demonstrated and illustrated through engaging examples which invite the reader to work with the provided datasets. Some methods that are discussed in this volume include: signatures of selection, population parameters (LD, FST, FIS, etc); use of a genomic relationship matrix for population diversity studies; use of SNP data for parentage testing; snpBLUP and gBLUP for genomic prediction. Step-by-step, all the R code required for a genome-wide association study is shown: starting from raw SNP data, how to build databases to handle and manage the data, quality control and filtering measures, association testing and evaluation of results, through to identification and functional annotation of candidate genes. Similarly, gene expression analyses are shown using microarray and RNAseq data. At a time when genomic data is decidedly big, the skills from this book are critical. In recent years R has become the de facto tool for analysis of gene expression data, in addition to its prominent role in analysis of genomic data. Benefits to using R include the integrated development environment for analysis, flexibility and control of the analytic workflow. Included topics are core components of advanced undergraduate and graduate classes in bioinformatics, genomics and statistical genetics. This book is also designed to be used by students in computer science and statistics who want to learn the practical aspects of genomic analysis without delving into algorithmic details. The datasets used throughout the book may be downloaded from the publisher’s website.

Bioinformatics and Computational Biology Solutions Using R and Bioconductor

Bioinformatics and Computational Biology Solutions Using R and Bioconductor PDF Author: Robert Gentleman
Publisher: Springer Science & Business Media
ISBN: 0387293620
Category : Computers
Languages : en
Pages : 478

Get Book Here

Book Description
Full four-color book. Some of the editors created the Bioconductor project and Robert Gentleman is one of the two originators of R. All methods are illustrated with publicly available data, and a major section of the book is devoted to fully worked case studies. Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers.

Computational Genome Analysis

Computational Genome Analysis PDF Author: Richard C. Deonier
Publisher: Springer Science & Business Media
ISBN: 0387288074
Category : Computers
Languages : en
Pages : 543

Get Book Here

Book Description
This book presents the foundations of key problems in computational molecular biology and bioinformatics. It focuses on computational and statistical principles applied to genomes, and introduces the mathematics and statistics that are crucial for understanding these applications. The book features a free download of the R software statistics package and the text provides great crossover material that is interesting and accessible to students in biology, mathematics, statistics and computer science. More than 100 illustrations and diagrams reinforce concepts and present key results from the primary literature. Exercises are given at the end of chapters.

Introduction to Bioinformatics with R

Introduction to Bioinformatics with R PDF Author: Edward Curry
Publisher: CRC Press
ISBN: 1351015303
Category : Mathematics
Languages : en
Pages : 311

Get Book Here

Book Description
In biological research, the amount of data available to researchers has increased so much over recent years, it is becoming increasingly difficult to understand the current state of the art without some experience and understanding of data analytics and bioinformatics. An Introduction to Bioinformatics with R: A Practical Guide for Biologists leads the reader through the basics of computational analysis of data encountered in modern biological research. With no previous experience with statistics or programming required, readers will develop the ability to plan suitable analyses of biological datasets, and to use the R programming environment to perform these analyses. This is achieved through a series of case studies using R to answer research questions using molecular biology datasets. Broadly applicable statistical methods are explained, including linear and rank-based correlation, distance metrics and hierarchical clustering, hypothesis testing using linear regression, proportional hazards regression for survival data, and principal component analysis. These methods are then applied as appropriate throughout the case studies, illustrating how they can be used to answer research questions. Key Features: · Provides a practical course in computational data analysis suitable for students or researchers with no previous exposure to computer programming. · Describes in detail the theoretical basis for statistical analysis techniques used throughout the textbook, from basic principles · Presents walk-throughs of data analysis tasks using R and example datasets. All R commands are presented and explained in order to enable the reader to carry out these tasks themselves. · Uses outputs from a large range of molecular biology platforms including DNA methylation and genotyping microarrays; RNA-seq, genome sequencing, ChIP-seq and bisulphite sequencing; and high-throughput phenotypic screens. · Gives worked-out examples geared towards problems encountered in cancer research, which can also be applied across many areas of molecular biology and medical research. This book has been developed over years of training biological scientists and clinicians to analyse the large datasets available in their cancer research projects. It is appropriate for use as a textbook or as a practical book for biological scientists looking to gain bioinformatics skills.

Genomic Signal Processing and Statistics

Genomic Signal Processing and Statistics PDF Author: Edward R. Dougherty
Publisher: Hindawi Publishing Corporation
ISBN: 9775945070
Category : DNA microarrays
Languages : en
Pages : 456

Get Book Here

Book Description
Recent advances in genomic studies have stimulated synergetic research and development in many cross-disciplinary areas. Processing the vast genomic data, especially the recent large-scale microarray gene expression data, to reveal the complex biological functionality, represents enormous challenges to signal processing and statistics. This perspective naturally leads to a new field, genomic signal processing (GSP), which studies the processing of genomic signals by integrating the theory of signal processing and statistics. Written by an international, interdisciplinary team of authors, this invaluable edited volume is accessible to students just entering this emergent field, and to researchers, both in academia and in industry, in the fields of molecular biology, engineering, statistics, and signal processing. The book provides tutorial-level overviews and addresses the specific needs of genomic signal processing students and researchers as a reference book. The book aims to address current genomic challenges by exploiting potential synergies between genomics, signal processing, and statistics, with special emphasis on signal processing and statistical tools for structural and functional understanding of genomic data. The first part of this book provides a brief history of genomic research and a background introduction from both biological and signal-processing/statistical perspectives, so that readers can easily follow the material presented in the rest of the book. In what follows, overviews of state-of-the-art techniques are provided. We start with a chapter on sequence analysis, and follow with chapters on feature selection, classification, and clustering of microarray data. We then discuss the modeling, analysis, and simulation of biological regulatory networks, especially gene regulatory networks based on Boolean and Bayesian approaches. Visualization and compression of gene data, and supercomputer implementation of genomic signal processing systems are also treated. Finally, we discuss systems biology and medical applications of genomic research as well as the future trends in genomic signal processing and statistics research.

Genomics in the Cloud

Genomics in the Cloud PDF Author: Geraldine A. Van der Auwera
Publisher: O'Reilly Media
ISBN: 1491975164
Category : Science
Languages : en
Pages : 496

Get Book Here

Book Description
Data in the genomics field is booming. In just a few years, organizations such as the National Institutes of Health (NIH) will host 50+ petabytesâ??or over 50 million gigabytesâ??of genomic data, and theyâ??re turning to cloud infrastructure to make that data available to the research community. How do you adapt analysis tools and protocols to access and analyze that volume of data in the cloud? With this practical book, researchers will learn how to work with genomics algorithms using open source tools including the Genome Analysis Toolkit (GATK), Docker, WDL, and Terra. Geraldine Van der Auwera, longtime custodian of the GATK user community, and Brian Oâ??Connor of the UC Santa Cruz Genomics Institute, guide you through the process. Youâ??ll learn by working with real data and genomics algorithms from the field. This book covers: Essential genomics and computing technology background Basic cloud computing operations Getting started with GATK, plus three major GATK Best Practices pipelines Automating analysis with scripted workflows using WDL and Cromwell Scaling up workflow execution in the cloud, including parallelization and cost optimization Interactive analysis in the cloud using Jupyter notebooks Secure collaboration and computational reproducibility using Terra