Computational & Experimental Methods in Multiphase & Complex Flow IX

Computational & Experimental Methods in Multiphase & Complex Flow IX PDF Author: P. Vorobieff
Publisher: WIT Press
ISBN: 1784661953
Category : Science
Languages : en
Pages : 179

Get Book Here

Book Description
The 9th book from this successful conference series, on Computational & Experimental Methods in Multiphase & Complex Flow, presents the latest research in one of the most challenging, yet most universally applicable areas of technology. Multiphase flows are found in all areas of technology and the range of related problems of interest is vast, including astrophysics, biology, geophysics, atmospheric process, and many areas of engineering. Recently multiphase fluid dynamics have generated a great deal of attention, leading to many notable advances in experimental, analytical and numerical studies. It is perhaps, however, work on numerical solutions which is the most noticeable owing to the continuing improvements in computer software tools. Progress in numerical methods has permitted the solution of many practical problems, helping to improve our understanding of the physics involved. The presented papers illustrate the close interaction between numerical modellers and researchers working to gradually resolve the many outstanding issues in our understanding of multiphase flow. They cover such topics as: Multiphase flow simulation; Bubble and drop dynamics; Interface behaviour; Experimental measurements; Energy applications; Compressible flows; Flow in porous media; Turbulent flow; Image processing; Heat transfer; Atomization; Hydromagnetics; Plasma; Fluidised beds; Cavitation; Multiphase chemical reactions.

Computational & Experimental Methods in Multiphase & Complex Flow IX

Computational & Experimental Methods in Multiphase & Complex Flow IX PDF Author: P. Vorobieff
Publisher: WIT Press
ISBN: 1784661953
Category : Science
Languages : en
Pages : 179

Get Book Here

Book Description
The 9th book from this successful conference series, on Computational & Experimental Methods in Multiphase & Complex Flow, presents the latest research in one of the most challenging, yet most universally applicable areas of technology. Multiphase flows are found in all areas of technology and the range of related problems of interest is vast, including astrophysics, biology, geophysics, atmospheric process, and many areas of engineering. Recently multiphase fluid dynamics have generated a great deal of attention, leading to many notable advances in experimental, analytical and numerical studies. It is perhaps, however, work on numerical solutions which is the most noticeable owing to the continuing improvements in computer software tools. Progress in numerical methods has permitted the solution of many practical problems, helping to improve our understanding of the physics involved. The presented papers illustrate the close interaction between numerical modellers and researchers working to gradually resolve the many outstanding issues in our understanding of multiphase flow. They cover such topics as: Multiphase flow simulation; Bubble and drop dynamics; Interface behaviour; Experimental measurements; Energy applications; Compressible flows; Flow in porous media; Turbulent flow; Image processing; Heat transfer; Atomization; Hydromagnetics; Plasma; Fluidised beds; Cavitation; Multiphase chemical reactions.

Computational & Experimental Methods in Multiphase & Complex Flow X

Computational & Experimental Methods in Multiphase & Complex Flow X PDF Author: S. Hernández
Publisher: WIT Press
ISBN: 1784663298
Category : Science
Languages : en
Pages : 251

Get Book Here

Book Description
Composed of papers presented at the 10th conference on Multiphase flow this book presents the latest research on the subject. The research included in this volume focuses on using synergies between experimental and computational techniques to gain a better understanding of all classes of multiphase and complex flow.

Computational Techniques for Multiphase Flows

Computational Techniques for Multiphase Flows PDF Author: Guan Heng Yeoh
Publisher: Elsevier
ISBN: 0080914896
Category : Computers
Languages : en
Pages : 658

Get Book Here

Book Description
Mixed or multiphase flows of solid/liquid or solid/gas are commonly found in many industrial fields, and their behavior is complex and difficult to predict in many cases. The use of computational fluid dynamics (CFD) has emerged as a powerful tool for the understanding of fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, beverage and pharmaceutical industries. Computational Techniques for Multiphase Flows enables scientists and engineers to the undertand the basis and application of CFD in muliphase flow, explains how to use the technique, when to use it and how to interpret the results and apply them to improving aplications in process enginering and other multiphase application areas including the pumping, automotive and energy sectors. - Understandable guide to a complex subject - Important in many industries - Ideal for potential users of CFD

Computational Methods in Multiphase Flow VI

Computational Methods in Multiphase Flow VI PDF Author: Andrea Alberto Mammoli
Publisher: WIT Press
ISBN: 1845645189
Category : Science
Languages : en
Pages : 345

Get Book Here

Book Description
Multiphase flows, which can involve compressible or incompressible linear or nonlinear, fluids, Are found in all areas of technology, at all length scales and flow regimes. In spite of their ubiquitousness, however multiphase flow continues to be one of the most challenging areas of computational mechanics and experimental methods, with numerous problems remaining unsolved to date. Because the multiphase flow problems are so complex, advanced computational and experimental methods are often required to solve the equations that describe them. The many hhallenges include modelling nonlinear fluids, modelling and tracking interfaces, dealing with multiple length scales, characterizing phase structures, and treating drop breakup and coalescence. Models must be validated, which requires the use of expensive and difficult experimental techniquess. This book presents contributions on the latest research in these techniques, presented at the sixth in a biennial series of conferences on the subject that begain in 2001. Featured topics include: Bubble and drop dynamics, Flow in porous media, Turbulent flow, Multiphase flow simulation, Image processing, Heat transfer, Interaction of gases, liquids and solids, Interface behaviour, Small scale phenomena, Atomization processes, and Liquid film behaviour.

Multiphase Flow

Multiphase Flow PDF Author: Peter Vorobieff
Publisher: WIT Press
ISBN: 1784663115
Category : Science
Languages : en
Pages : 467

Get Book Here

Book Description
The selected papers contained in this book present the latest research in one of the most challenging, yet most universally applicable areas of technology. Multiphase flows are found in all areas of technology and the range of related problems of interest is vast, including many areas of science and engineering. Recently multiphase fluid dynamics have generated a great deal of attention, leading to many notable advances in experimental, analytical and numerical studies. It is perhaps, however, work on numerical solutions which is the most noticeable owing to the continuing improvements in computer software tools. Progress in numerical methods has permitted the solution of many practical problems, helping to improve our understanding of the physics involved. The presented papers illustrate the close interaction between numerical modellers and researchers working to gradually resolve the many outstanding issues in our understanding of multiphase flow.

Materials and Contact Characterisation IX

Materials and Contact Characterisation IX PDF Author: S. Hernández
Publisher: WIT Press
ISBN: 178466331X
Category : Technology & Engineering
Languages : en
Pages : 287

Get Book Here

Book Description
Including papers from the 9th edition of the International Conference on Computational Methods and Experiments in Material and Contact Characterisation this volume presents the work of selected researchers on the subject. Material and contact characterisation is a rapidly advancing field and this volume contains the latest research. Of particular interest to industry and society is the knowledge of surface treatment and contact mechanics of these materials to determine the in-service behaviour of components subject to contact conditions. Modern society requires systems that operate at conditions that use resources effectively. In terms of components durability, the understanding of surface engineering wear frictional and lubrication dynamics has never been so important. Current research is focussed on modification technologies that can increase the surface durability of materials. The characteristics of the system reveal which surface engineering methods should be chosen and as a consequence it is essential to study the combination of surface treatment and contact mechanics. The accurate characterisation of the physical and chemical properties of materials requires the application of both experimental techniques and computer simulation methods in order to gain a correct analysis. A very wide range of materials, starting with metals through polymers and semiconductors to composites, necessitates a whole spectrum of characteristic experimental techniques and research methods. The papers in the book cover a number of topics, including: Computer methods and simulation; Experimental and measurement techniques; Mechanical characterisation and testing; Materials under extreme conditions; Polymers and plastics; Advances in composites; Micro and macro characterisation; Corrosion and erosion; Damage, fatigue and fracture; Recycled materials; Materials and energy; Surface problems and contact mechanics; Surface modification and treatments; Thick and thin coatings; Tribomechanics and wear mechanics; Biomechanical characterisation; Biomechanical applications and Case studies.

Advances in Fluid Mechanics IX

Advances in Fluid Mechanics IX PDF Author: Matiur Rahman
Publisher: WIT Press
ISBN: 1845646002
Category : Science
Languages : en
Pages : 609

Get Book Here

Book Description
This book discusses the basic formulations of fluid mechanics and their computer modelling, as well as the relationship between experimental and analytical results. Containing papers from the Ninth International Conference on Advances in Fluid Mechanics, this book discusses the basic formulations of fluid mechanics and their computer modelling, as well as the relationship between experimental and analytical results. Scientists, engineers, and other professionals interested in the latest developments in theoretical and computational fluid mechanics will find the book a useful addition to the literature. The book covers a wide range of topics, with emphasis on new applications and research currently in progress, including: Computational Methods in Fluid Mechanics, Environmental Fluid Mechanics; Experimental Versus Simulation Methods; Multiphase Flow; Hydraulics and Hydrodynamics; Heat and Mass Transfer; Industrial Applications; Wave Studies; Biofluids; Fluid Structure Interaction.

Computational Methods for Multiphase Flows in Porous Media

Computational Methods for Multiphase Flows in Porous Media PDF Author: Zhangxin Chen
Publisher: SIAM
ISBN: 0898716063
Category : Computers
Languages : en
Pages : 551

Get Book Here

Book Description
This book offers a fundamental and practical introduction to the use of computational methods. A thorough discussion of practical aspects of the subject is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Each chapter ends with bibliographic information and exercises.

The History of Multiphase Science and Computational Fluid Dynamics

The History of Multiphase Science and Computational Fluid Dynamics PDF Author: Robert W. Lyczkowski
Publisher: Springer
ISBN: 3319665022
Category : Technology & Engineering
Languages : en
Pages : 329

Get Book Here

Book Description
This book tells the story of how the science of computational multiphase flow began in an effort to better analyze hypothetical light water power reactor accidents, including the “loss of coolant” accident. Written in the style of a memoir by an author with 40 years’ engineering research experience in computer modeling of fluidized beds and slurries, multiphase computational fluid dynamics, and multiphase flow, most recently at Argonne National Laboratory, the book traces how this new science developed during this time into RELAP5 and other computer programs to encompass realistic descriptions of phenomena ranging from fluidized beds for energy and chemicals production, slurry transport, pyroclastic flow from volcanoes, hemodynamics of blood-borne cells, and flow of granular particulates. Such descriptions are not possible using the classical single-phase Navier-Stokes equations. Whereas many books on computational techniques and computational fluid dynamics have appeared, they do not trace the historical development of the science in any detail, and none touch on the beginnings of multiphase science. A robust, process-rich account of technologic evolution, the book is ideal for students and practitioners of mechanical, chemical, nuclear engineering, and the history of science and technology.

International Journal of Computational Methods and Experimental Measurements - Volume 3, Issue 1

International Journal of Computational Methods and Experimental Measurements - Volume 3, Issue 1 PDF Author:
Publisher: WIT Press
ISBN:
Category : Mathematics
Languages : en
Pages : 86

Get Book Here

Book Description
The International Journal of Computational Methods and Experimental Measurements (CMEM) provides the scientific community with a forum to present the interaction between the complementary aspects of computational methods and experimental measurements, and to stress the importance of their harmonious development and integration. The steady progress in the efficiency of computers and software has resulted in the continuous development of computer simulation, which has influenced all scientific and engineering activities. As these simulations expand and improve, the need to validate them grows, and this can only be successfully achieved by performing dedicated experimental tests. Furthermore, because of their continual development, experimental techniques are becoming so complex and sophisticated that they need to be controlled by computers, with the data obtained processed by means of computational methods. The aim of the Journal is to review the latest work in computational methods and experimental measurements, with a view to achieving harmonious development and interaction between the two.