Computational Electrochemistry

Computational Electrochemistry PDF Author: S. Paddison
Publisher: The Electrochemical Society
ISBN: 1607686511
Category : Science
Languages : en
Pages : 49

Get Book Here

Book Description

Computational Electrochemistry

Computational Electrochemistry PDF Author: S. Paddison
Publisher: The Electrochemical Society
ISBN: 1607686511
Category : Science
Languages : en
Pages : 49

Get Book Here

Book Description


Atomic-Scale Modelling of Electrochemical Systems

Atomic-Scale Modelling of Electrochemical Systems PDF Author: Marko M. Melander
Publisher: John Wiley & Sons
ISBN: 1119605636
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.

Atomic-Scale Modelling of Electrochemical Systems

Atomic-Scale Modelling of Electrochemical Systems PDF Author: Marko M. Melander
Publisher: John Wiley & Sons
ISBN: 111960561X
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.

Computational Chemistry and Molecular Modeling

Computational Chemistry and Molecular Modeling PDF Author: K. I. Ramachandran
Publisher: Springer Science & Business Media
ISBN: 3540773029
Category : Science
Languages : en
Pages : 405

Get Book Here

Book Description
The gap between introductory level textbooks and highly specialized monographs is filled by this modern textbook. It provides in one comprehensive volume the in-depth theoretical background for molecular modeling and detailed descriptions of the applications in chemistry and related fields like drug design, molecular sciences, biomedical, polymer and materials engineering. Special chapters on basic mathematics and the use of respective software tools are included. Numerous numerical examples, exercises and explanatory illustrations as well as a web site with application tools (http://www.amrita.edu/cen/ccmm) support the students and lecturers.

Computational Methods in Science and Engineering

Computational Methods in Science and Engineering PDF Author: George Maroulis
Publisher: American Inst. of Physics
ISBN: 9780735404779
Category : Science
Languages : en
Pages : 704

Get Book Here

Book Description
All papers have been peer-reviewed. The aim of ICCMSE 2007 is to bring together computational scientists and engineers from several disciplines in order to share methods, methodologies and ideas. The potential readers of these proceedings are all the scientists with interest in the following fields: Computational Mathematics, Theoretical Physics, Computational Physics, Theoretical Chemistry, Computational Chemistry, Mathematical Chemistry, Computational Engineering, Computational Mechanics, Computational Biology and Medicine, Scientific Computation, High Performance Computing, Parallel and Distributed Computing, Visualization, Problem Solving Environments, Software Tools, Advanced Numerical Algorithms, Modeling and Simulation of Complex Systems, Web-based Simulation and Computing, Grid-based Simulation and Computing, Computational Grids, and Computer Science.

Recent Progress in Computational Sciences and Engineering (2 vols)

Recent Progress in Computational Sciences and Engineering (2 vols) PDF Author: Theodore Simos
Publisher: CRC Press
ISBN: 042952787X
Category : Computers
Languages : en
Pages : 1248

Get Book Here

Book Description
This volume brings together selected contributed papers presented at the International Conference of Computational Methods in Science and Engineering (ICCMSE 2006), held in Chania, Greece, October 2006. The conference aims to bring together computational scientists from several disciplines in order to share methods and ideas. The ICCMSE is unique in its kind. It regroups original contributions from all fields of the traditional Sciences, Mathematics, Physics, Chemistry, Biology, Medicine and all branches of Engineering. It would be perhaps more appropriate to define the ICCMSE as a conference on computational science and its applications to science and engineering. Topics of general interest are: Computational Mathematics, Theoretical Physics and Theoretical Chemistry. Computational Engineering and Mechanics, Computational Biology and Medicine, Computational Geosciences and Meteorology, Computational Economics and Finance, Scientific Computation. High Performance Computing, Parallel and Distributed Computing, Visualization, Problem Solving Environments, Numerical Algorithms, Modelling and Simulation of Complex System, Web-based Simulation and Computing, Grid-based Simulation and Computing, Fuzzy Logic, Hybrid Computational Methods, Data Mining, Information Retrieval and Virtual Reality, Reliable Computing, Image Processing, Computational Science and Education etc. More than 800 extended abstracts have been submitted for consideration for presentation in ICCMSE 2005. From these 500 have been selected after international peer review by at least two independent reviewers.

Digital Simulation in Electrochemistry

Digital Simulation in Electrochemistry PDF Author: D. Britz
Publisher: Springer Science & Business Media
ISBN: 3662218194
Category : Science
Languages : en
Pages : 131

Get Book Here

Book Description
This book is the result of frustration. When I first became interested in digi tal simulation in 1967 (I didn't know the name then), there were no texts to tell one the how of it. This has not changed greatly since then; it is significant that just about all publications about the technique refer to a chapter by Feldberg in an electrochemical series, written in 1969. When I ran a course on the method recently, it became evident that this chapter is not enough for the raw beginner. Neither does he/she get much help from the mathematical textbooks which, at best, leave the special electrochemical aspects (if not a lot else) to one's imagination. This book, then, is written for practical digital simulators who do not have a friend who will tell them how to do it. The beauty of the digital approach is that one can separate out various dynamic processes taking place simultaneously. I have structured the book in this way. The major computing usually lies in the diffusion of substance, while the major program ming effort (and preparatory paper work) goes into the boundary conditions. These are treated separately.

Catalysis in Electrochemistry

Catalysis in Electrochemistry PDF Author: Elizabeth Santos
Publisher: John Wiley & Sons
ISBN: 0470934735
Category : Science
Languages : en
Pages : 548

Get Book Here

Book Description
Catalysis in Electrochemistry: From Fundamental Aspects to Strategies for Fuel Cell Development is a modern, comprehensive reference work on catalysis in electrochemistry, including principles, methods, strategies, and applications. It points out differences between catalysis at gas/surfaces and electrochemical interfaces, along with the future possibilities and impact of electrochemical science on energy problems. This book contributes both to fundamental science; experience in the design, preparation, and characterization of electrocatalytic materials; and the industrial application of electrocatalytic materials for electrochemical reactions. This is an essential resource for scientists globally in academia, industry, and government institutions.

Electrochemical Engineering

Electrochemical Engineering PDF Author: Richard C. Alkire
Publisher: John Wiley & Sons
ISBN: 3527807209
Category : Science
Languages : en
Pages : 467

Get Book Here

Book Description
This volume in the "Advances in Electrochemical Sciences and Engineering" series focuses on problem-solving, illustrating how to translate basic science into engineering solutions. The book's concept is to bring together engineering solutions across the range of nano-bio-photo-micro applications, with each chapter co-authored by an academic and an industrial expert whose collaboration led to reusable methods that are relevant beyond their initial use. Examples of experimental and/or computational methods are used throughout to facilitate the task of moving atomistic-scale discoveries and understanding toward well-engineered products and processes based on electrochemical phenomena.

Microfluidics

Microfluidics PDF Author: Yujun Song
Publisher: John Wiley & Sons
ISBN: 3527800654
Category : Science
Languages : en
Pages : 712

Get Book Here

Book Description
The first book offering a global overview of fundamental microfluidics and the wide range of possible applications, for example, in chemistry, biology, and biomedical science. As such, it summarizes recent progress in microfluidics, including its origin and development, the theoretical fundamentals, and fabrication techniques for microfluidic devices. The book also comprehensively covers the fluid mechanics, physics and chemistry as well as applications in such different fields as detection and synthesis of inorganic and organic materials. A useful reference for non-specialists and a basic guideline for research scientists and technicians already active in this field or intending to work in microfluidics.