Computational Chemistry. Computer Simulation Techniques

Computational Chemistry. Computer Simulation Techniques PDF Author: Edward Timoshenko
Publisher: Edward Timoshenko
ISBN:
Category : Computers
Languages : en
Pages : 32

Get Book Here

Book Description
We describe the important role of the in-silico methods in modern Chemistry and Physics of complex systems and overview the major techniques. The Born-Oppenheimer approximation for electronic configurations is introduced. Classical treatment of the motion of nuclei is then considered. Potential energy surfaces, force fields, geometry optimization and energy minimisation methods are discussed. The Newton’s equations of motion and their numerical integration methods are presented with the Euler and Verlet algorithms. Calculation of various observable averages is considered in Molecular Dynamics techniques in the NVE, NVT and NPT ensembles. Brownian stochastic Dynamics and the use of random numbers generators are introduced. Equilibrium simulations based on the Monte Carlo importance sampling methods and the Metropolis algorithm are discussed. The variational approach for the Schrödinger equation and various modern Quantum Chemistry methods for the electronic configurations of atomic and molecular systems are reviewed.

Computational Chemistry. Computer Simulation Techniques

Computational Chemistry. Computer Simulation Techniques PDF Author: Edward Timoshenko
Publisher: Edward Timoshenko
ISBN:
Category : Computers
Languages : en
Pages : 32

Get Book Here

Book Description
We describe the important role of the in-silico methods in modern Chemistry and Physics of complex systems and overview the major techniques. The Born-Oppenheimer approximation for electronic configurations is introduced. Classical treatment of the motion of nuclei is then considered. Potential energy surfaces, force fields, geometry optimization and energy minimisation methods are discussed. The Newton’s equations of motion and their numerical integration methods are presented with the Euler and Verlet algorithms. Calculation of various observable averages is considered in Molecular Dynamics techniques in the NVE, NVT and NPT ensembles. Brownian stochastic Dynamics and the use of random numbers generators are introduced. Equilibrium simulations based on the Monte Carlo importance sampling methods and the Metropolis algorithm are discussed. The variational approach for the Schrödinger equation and various modern Quantum Chemistry methods for the electronic configurations of atomic and molecular systems are reviewed.

Computational Chemistry and Molecular Modeling

Computational Chemistry and Molecular Modeling PDF Author: K. I. Ramachandran
Publisher: Springer Science & Business Media
ISBN: 3540773045
Category : Science
Languages : en
Pages : 405

Get Book Here

Book Description
The gap between introductory level textbooks and highly specialized monographs is filled by this modern textbook. It provides in one comprehensive volume the in-depth theoretical background for molecular modeling and detailed descriptions of the applications in chemistry and related fields like drug design, molecular sciences, biomedical, polymer and materials engineering. Special chapters on basic mathematics and the use of respective software tools are included. Numerous numerical examples, exercises and explanatory illustrations as well as a web site with application tools (http://www.amrita.edu/cen/ccmm) support the students and lecturers.

Computer Simulations Of Molecules And Condensed Matter: From Electronic Structures To Molecular Dynamics

Computer Simulations Of Molecules And Condensed Matter: From Electronic Structures To Molecular Dynamics PDF Author: Xin-zheng Li
Publisher: World Scientific
ISBN: 9813230460
Category : Science
Languages : en
Pages : 280

Get Book Here

Book Description
This book provides a relatively complete introduction to the methods used in computational condensed matter. A wide range of electronic structure theories are introduced, including traditional quantum chemistry methods, density functional theory, many-body perturbation theory, and more. Molecular dynamics simulations are also discussed, with extensions to enhanced sampling and free-energy calculation techniques including umbrella sampling, meta-dynamics, integrated tempering sampling, etc. As a further extension beyond the standard Born-Oppenheimer molecular dynamics, some simulation techniques for the description of quantum nuclear effects are also covered, based on Feynman's path-integral representation of quantum mechanics. The book aims to help beginning graduate students to set up a framework of the concepts they should know before tackling the physical/chemical problems they will face in their research.

A Practical Introduction to the Simulation of Molecular Systems

A Practical Introduction to the Simulation of Molecular Systems PDF Author: Martin J. Field
Publisher: Cambridge University Press
ISBN: 1139465813
Category : Science
Languages : en
Pages : 294

Get Book Here

Book Description
Molecular simulation is a powerful tool in materials science, physics, chemistry and biomolecular fields. This updated edition provides a pragmatic introduction to a wide range of techniques for the simulation of molecular systems at the atomic level. The first part concentrates on methods for calculating the potential energy of a molecular system, with new chapters on quantum chemical, molecular mechanical and hybrid potential techniques. The second part describes methods examining conformational, dynamical and thermodynamical properties of systems, covering techniques including geometry-optimization, normal-mode analysis, molecular dynamics, and Monte Carlo simulation. Using Python, the second edition includes numerous examples and program modules for each simulation technique, allowing the reader to perform the calculations and appreciate the inherent difficulties involved in each. This is a valuable resource for researchers and graduate students wanting to know how to use atomic-scale molecular simulations. Supplementary material, including the program library and technical information, available through www.cambridge.org/9780521852524.

Computer Simulation in Chemical Physics

Computer Simulation in Chemical Physics PDF Author: M.P. Allen
Publisher: Springer Science & Business Media
ISBN: 9401116792
Category : Science
Languages : en
Pages : 522

Get Book Here

Book Description
Computer Simulation in Chemical Physics contains the proceedings of a NATO Advanced Study Institute held at CORISA, Alghero, Sardinia, in September 1992. In the five years that have elapsed since the field was last summarized there have been a number of remarkable advances which have significantly expanded the scope of the methods. Good examples are the Car--Parrinello method, which allows the study of materials with itinerant electrons; the Gibbs technique for the direct simulation of liquid--vapor phase equilibria; the transfer of scaling concepts from simulations of spin models to more complex systems; and the development of the configurational--biased Monte-Carlo methods for studying dense polymers. The field has also been stimulated by an enormous increase in available computing power and the provision of new software. All these exciting developments, an more, are discussed in an accessible way here, making the book indispensable reading for graduate students and research scientists in both academic and industrial settings.

Beyond the Molecular Frontier

Beyond the Molecular Frontier PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309168392
Category : Science
Languages : en
Pages : 238

Get Book Here

Book Description
Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.

Computer Simulation in Materials Science

Computer Simulation in Materials Science PDF Author: M. Meyer
Publisher: Springer Science & Business Media
ISBN: 9401135460
Category : Science
Languages : en
Pages : 540

Get Book Here

Book Description
This volume collects the contributions! to the NATO Advanced Study Institute (ASI) held in Aussois (France) by March 25 - April 5, 1991. This NATO ASI was intended to present and illustrate recent advances in computer simulation techniques applied to the study of materials science problems. Introductory lectures have been devoted to classical simulations with special reference to recent technical improvements, in view of their application to complex systems (glasses, molecular systems . . . ). Several other lectures and seminars focused on the methods of elaboration of interatomic potentials and to a critical presentation of quantum simulation techniques. On the other hand, seminars and poster sessions offered the opportunity to discuss the results of a great variety of simulation studies dealing with materials and complex systems. We hope that these proceedings will be of some help for those interested in simulations of material properties. The scientific committee advises have been of crucial importance in determining the conference program. The directors of the ASI express their gratitude to the colleagues who have participated to the committee: Y. Adda, A. Bellemans, G. BIeris, J. Castaing, C. R. A. Catlow, G. Ciccotti, J. Friedel, M. Gillan, J. P. Hansen, M. L. Klein, G. Martin, S. Nose, L. Rull-Fernandez, J. Valleau, J. Villain. The main financial support has been provided by the NATO Scientific Affairs Division and the Commission of European Communities (plan Science).

Essential Computational Modeling in Chemistry

Essential Computational Modeling in Chemistry PDF Author: Philippe G. Ciarlet
Publisher: Elsevier
ISBN: 0444537619
Category : Mathematics
Languages : en
Pages : 399

Get Book Here

Book Description
Essential Computational Modeling in Chemistry presents key contributions selected from the volume in the Handbook of Numerical Analysis: Computational Modeling in Chemistry Vol. 10(2005). Computational Modeling is an active field of scientific computing at the crossroads between Physics, Chemistry, Applied Mathematics and Computer Science. Sophisticated mathematical models are increasingly complex and extensive computer simulations are on the rise. Numerical Analysis and scientific software have emerged as essential steps for validating mathematical models and simulations based on these models. This guide provides a quick reference of computational methods for use in understanding chemical reactions and how to control them. By demonstrating various computational methods in research, scientists can predict such things as molecular properties. The reference offers a number of techniques and the numerical analysis needed to perform rigorously founded computations. Various viewpoints of methods and applications are available for researchers to chose and experiment with; Numerical analysis and open problems is useful for experimentation; Most commonly used models and techniques for the molecular case is quickly accessible

Modern Techniques in Computational Chemistry: MOTECC-91

Modern Techniques in Computational Chemistry: MOTECC-91 PDF Author: E. Clementi
Publisher: Springer Science & Business Media
ISBN: 9789072199102
Category : Science
Languages : en
Pages : 1314

Get Book Here

Book Description


Computational Methods for Process Simulation

Computational Methods for Process Simulation PDF Author: W. Fred Ramirez
Publisher: Butterworth-Heinemann
ISBN: 0080529690
Category : Science
Languages : en
Pages : 473

Get Book Here

Book Description
Process Modelling and simulation have proved to be extremely successful engineering tools for the design and optimisation of physical, chemical and biochemical processes. The use of simulation has expanded rapidly over the last two decades because of the availability of large high-speed computers and indeed has become even more widespread with the rise of the desk-top PC resources now available to nearly every engineer and student. In the chemical industry large, realistic non-linear problems are routinely solved with the aid of computer simulation. This has a number of benefits, including easy assessment of the economic desirability of a project, convenient investigation of the effects of changes to system variables, and finally the introduction of mathematical rigour into the design process and inherent assumptions that may not have been there before. Computational Methods for Process Simulation develops the methods needed for the simulation of real processes to be found in the process industries. It also stresses the engineering fundamentals used in developing process models. Steady state and dynamic systems are considered, for both spatially lumped and spatially distributed problems. It develops analytical and numerical computational techniques for algebraic, ordinary and partial differential equations, and makes use of computer software routines that are widely available. Dedicated software examples are available via the internet. Written for a compulsory course element in the US Includes examples using software used in academia and industry Software available via the Internet