Computational Arithmetic Geometry

Computational Arithmetic Geometry PDF Author: Kristin Estella Lauter
Publisher: American Mathematical Soc.
ISBN: 0821843206
Category : Mathematics
Languages : en
Pages : 146

Get Book Here

Book Description
With the recent increase in available computing power, new computations are possible in many areas of arithmetic geometry. To name just a few examples, Cremona's tables of elliptic curves now go up to conductor 120,000 instead of just conductor 1,000, tables of Hilbert class fields are known for discriminant up to at least 5,000, and special values of Hilbert and Siegel modular forms can be calculated to extremely high precision. In many cases, these experimental capabilities haveled to new observations and ideas for progress in the field. They have also led to natural algorithmic questions on the feasibility and efficiency of many computations, especially for the purpose of applications in cryptography. The AMS Special Session on Computational Arithmetic Geometry, held onApril 29-30, 2006, in San Francisco, CA, gathered together many of the people currently working on the computational and algorithmic aspects of arithmetic geometry. This volume contains research articles related to talks given at the session. The majority of articles are devoted to various aspects of arithmetic geometry, mainly with a computational approach.

Computational Arithmetic Geometry

Computational Arithmetic Geometry PDF Author: Kristin Estella Lauter
Publisher: American Mathematical Soc.
ISBN: 0821843206
Category : Mathematics
Languages : en
Pages : 146

Get Book Here

Book Description
With the recent increase in available computing power, new computations are possible in many areas of arithmetic geometry. To name just a few examples, Cremona's tables of elliptic curves now go up to conductor 120,000 instead of just conductor 1,000, tables of Hilbert class fields are known for discriminant up to at least 5,000, and special values of Hilbert and Siegel modular forms can be calculated to extremely high precision. In many cases, these experimental capabilities haveled to new observations and ideas for progress in the field. They have also led to natural algorithmic questions on the feasibility and efficiency of many computations, especially for the purpose of applications in cryptography. The AMS Special Session on Computational Arithmetic Geometry, held onApril 29-30, 2006, in San Francisco, CA, gathered together many of the people currently working on the computational and algorithmic aspects of arithmetic geometry. This volume contains research articles related to talks given at the session. The majority of articles are devoted to various aspects of arithmetic geometry, mainly with a computational approach.

Arithmetic Geometry, Number Theory, and Computation

Arithmetic Geometry, Number Theory, and Computation PDF Author: Jennifer S. Balakrishnan
Publisher: Springer Nature
ISBN: 3030809145
Category : Mathematics
Languages : en
Pages : 587

Get Book Here

Book Description
This volume contains articles related to the work of the Simons Collaboration “Arithmetic Geometry, Number Theory, and Computation.” The papers present mathematical results and algorithms necessary for the development of large-scale databases like the L-functions and Modular Forms Database (LMFDB). The authors aim to develop systematic tools for analyzing Diophantine properties of curves, surfaces, and abelian varieties over number fields and finite fields. The articles also explore examples important for future research. Specific topics include● algebraic varieties over finite fields● the Chabauty-Coleman method● modular forms● rational points on curves of small genus● S-unit equations and integral points.

Computational Geometry

Computational Geometry PDF Author: Franco P. Preparata
Publisher: Springer Science & Business Media
ISBN: 1461210984
Category : Mathematics
Languages : en
Pages : 413

Get Book Here

Book Description
From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2

Computational Geometry in C

Computational Geometry in C PDF Author: Joseph O'Rourke
Publisher: Cambridge University Press
ISBN: 110726863X
Category : Computers
Languages : en
Pages : 396

Get Book Here

Book Description
This is the revised and expanded 1998 edition of a popular introduction to the design and implementation of geometry algorithms arising in areas such as computer graphics, robotics, and engineering design. The basic techniques used in computational geometry are all covered: polygon triangulations, convex hulls, Voronoi diagrams, arrangements, geometric searching, and motion planning. The self-contained treatment presumes only an elementary knowledge of mathematics, but reaches topics on the frontier of current research, making it a useful reference for practitioners at all levels. The second edition contains material on several new topics, such as randomized algorithms for polygon triangulation, planar point location, 3D convex hull construction, intersection algorithms for ray-segment and ray-triangle, and point-in-polyhedron. The code in this edition is significantly improved from the first edition (more efficient and more robust), and four new routines are included. Java versions for this new edition are also available. All code is accessible from the book's Web site (http://cs.smith.edu/~orourke/) or by anonymous ftp.

A First Course in Computational Algebraic Geometry

A First Course in Computational Algebraic Geometry PDF Author: Wolfram Decker
Publisher: Cambridge University Press
ISBN: 1107612535
Category : Computers
Languages : en
Pages : 127

Get Book Here

Book Description
A quick guide to computing in algebraic geometry with many explicit computational examples introducing the computer algebra system Singular.

Computational Methods in Commutative Algebra and Algebraic Geometry

Computational Methods in Commutative Algebra and Algebraic Geometry PDF Author: Wolmer Vasconcelos
Publisher: Springer Science & Business Media
ISBN: 9783540213116
Category : Mathematics
Languages : en
Pages : 432

Get Book Here

Book Description
This ACM volume deals with tackling problems that can be represented by data structures which are essentially matrices with polynomial entries, mediated by the disciplines of commutative algebra and algebraic geometry. The discoveries stem from an interdisciplinary branch of research which has been growing steadily over the past decade. The author covers a wide range, from showing how to obtain deep heuristics in a computation of a ring, a module or a morphism, to developing means of solving nonlinear systems of equations - highlighting the use of advanced techniques to bring down the cost of computation. Although intended for advanced students and researchers with interests both in algebra and computation, many parts may be read by anyone with a basic abstract algebra course.

Computing in Algebraic Geometry

Computing in Algebraic Geometry PDF Author: Wolfram Decker
Publisher: Springer Science & Business Media
ISBN: 3540289933
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
This book provides a quick access to computational tools for algebraic geometry, the mathematical discipline which handles solution sets of polynomial equations. Originating from a number of intense one week schools taught by the authors, the text is designed so as to provide a step by step introduction which enables the reader to get started with his own computational experiments right away. The authors present the basic concepts and ideas in a compact way.

Discrete and Computational Geometry

Discrete and Computational Geometry PDF Author: Satyan L. Devadoss
Publisher: Princeton University Press
ISBN: 1400838983
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
An essential introduction to discrete and computational geometry Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only)

Arithmetic Algebraic Geometry

Arithmetic Algebraic Geometry PDF Author: Brian David Conrad
Publisher: American Mathematical Soc.
ISBN: 9780821886915
Category : Mathematics
Languages : en
Pages : 588

Get Book Here

Book Description
The articles in this volume are expanded versions of lectures delivered at the Graduate Summer School and at the Mentoring Program for Women in Mathematics held at the Institute for Advanced Study/Park City Mathematics Institute. The theme of the program was arithmetic algebraic geometry. The choice of lecture topics was heavily influenced by the recent spectacular work of Wiles on modular elliptic curves and Fermat's Last Theorem. The main emphasis of the articles in the volume is on elliptic curves, Galois representations, and modular forms. One lecture series offers an introduction to these objects. The others discuss selected recent results, current research, and open problems and conjectures. The book would be a suitable text for an advanced graduate topics course in arithmetic algebraic geometry.

Mathematics and Computation

Mathematics and Computation PDF Author: Avi Wigderson
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434

Get Book Here

Book Description
An introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography