Computational Algebra and Number Theory

Computational Algebra and Number Theory PDF Author: Wieb Bosma
Publisher: Springer Science & Business Media
ISBN: 9401711089
Category : Mathematics
Languages : en
Pages : 326

Get Book Here

Book Description
Computers have stretched the limits of what is possible in mathematics. More: they have given rise to new fields of mathematical study; the analysis of new and traditional algorithms, the creation of new paradigms for implementing computational methods, the viewing of old techniques from a concrete algorithmic vantage point, to name but a few. Computational Algebra and Number Theory lies at the lively intersection of computer science and mathematics. It highlights the surprising width and depth of the field through examples drawn from current activity, ranging from category theory, graph theory and combinatorics, to more classical computational areas, such as group theory and number theory. Many of the papers in the book provide a survey of their topic, as well as a description of present research. Throughout the variety of mathematical and computational fields represented, the emphasis is placed on the common principles and the methods employed. Audience: Students, experts, and those performing current research in any of the topics mentioned above.

Computational Algebra and Number Theory

Computational Algebra and Number Theory PDF Author: Wieb Bosma
Publisher: Springer Science & Business Media
ISBN: 9401711089
Category : Mathematics
Languages : en
Pages : 326

Get Book Here

Book Description
Computers have stretched the limits of what is possible in mathematics. More: they have given rise to new fields of mathematical study; the analysis of new and traditional algorithms, the creation of new paradigms for implementing computational methods, the viewing of old techniques from a concrete algorithmic vantage point, to name but a few. Computational Algebra and Number Theory lies at the lively intersection of computer science and mathematics. It highlights the surprising width and depth of the field through examples drawn from current activity, ranging from category theory, graph theory and combinatorics, to more classical computational areas, such as group theory and number theory. Many of the papers in the book provide a survey of their topic, as well as a description of present research. Throughout the variety of mathematical and computational fields represented, the emphasis is placed on the common principles and the methods employed. Audience: Students, experts, and those performing current research in any of the topics mentioned above.

A Course in Computational Algebraic Number Theory

A Course in Computational Algebraic Number Theory PDF Author: Henri Cohen
Publisher: Springer Science & Business Media
ISBN: 3662029456
Category : Mathematics
Languages : en
Pages : 556

Get Book Here

Book Description
A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.

Computer Algebra and Polynomials

Computer Algebra and Polynomials PDF Author: Jaime Gutierrez
Publisher: Springer
ISBN: 3319150812
Category : Computers
Languages : en
Pages : 222

Get Book Here

Book Description
Algebra and number theory have always been counted among the most beautiful mathematical areas with deep proofs and elegant results. However, for a long time they were not considered that important in view of the lack of real-life applications. This has dramatically changed: nowadays we find applications of algebra and number theory frequently in our daily life. This book focuses on the theory and algorithms for polynomials over various coefficient domains such as a finite field or ring. The operations on polynomials in the focus are factorization, composition and decomposition, basis computation for modules, etc. Algorithms for such operations on polynomials have always been a central interest in computer algebra, as it combines formal (the variables) and algebraic or numeric (the coefficients) aspects. The papers presented were selected from the Workshop on Computer Algebra and Polynomials, which was held in Linz at the Johann Radon Institute for Computational and Applied Mathematics (RICAM) during November 25-29, 2013, at the occasion of the Special Semester on Applications of Algebra and Number Theory.

Computational Number Theory

Computational Number Theory PDF Author: Abhijit Das
Publisher: CRC Press
ISBN: 1482205823
Category : Computers
Languages : en
Pages : 602

Get Book Here

Book Description
Developed from the author's popular graduate-level course, Computational Number Theory presents a complete treatment of number-theoretic algorithms. Avoiding advanced algebra, this self-contained text is designed for advanced undergraduate and beginning graduate students in engineering. It is also suitable for researchers new to the field and pract

Advanced Topics in Computational Number Theory

Advanced Topics in Computational Number Theory PDF Author: Henri Cohen
Publisher: Springer Science & Business Media
ISBN: 1441984895
Category : Mathematics
Languages : en
Pages : 591

Get Book Here

Book Description
Written by an authority with great practical and teaching experience in the field, this book addresses a number of topics in computational number theory. Chapters one through five form a homogenous subject matter suitable for a six-month or year-long course in computational number theory. The subsequent chapters deal with more miscellaneous subjects.

$q$-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra

$q$-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra PDF Author: George E. Andrews
Publisher: American Mathematical Soc.
ISBN: 0821807161
Category : Mathematics
Languages : en
Pages : 144

Get Book Here

Book Description
Integrates developments and related applications in $q$-series with a historical development of the field. This book develops important analytic topics (Bailey chains, integrals, and constant terms) and applications to additive number theory.

Ideals, Varieties, and Algorithms

Ideals, Varieties, and Algorithms PDF Author: David Cox
Publisher: Springer Science & Business Media
ISBN: 1475721811
Category : Mathematics
Languages : en
Pages : 523

Get Book Here

Book Description
Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. Contains a new section on Axiom and an update about MAPLE, Mathematica and REDUCE.

Algorithmic Number Theory: Efficient algorithms

Algorithmic Number Theory: Efficient algorithms PDF Author: Eric Bach
Publisher: MIT Press
ISBN: 9780262024051
Category : Computers
Languages : en
Pages : 536

Get Book Here

Book Description
Volume 1.

Algorithmic Algebraic Number Theory

Algorithmic Algebraic Number Theory PDF Author: M. Pohst
Publisher: Cambridge University Press
ISBN: 9780521596695
Category : Mathematics
Languages : en
Pages : 520

Get Book Here

Book Description
Now in paperback, this classic book is addresssed to all lovers of number theory. On the one hand, it gives a comprehensive introduction to constructive algebraic number theory, and is therefore especially suited as a textbook for a course on that subject. On the other hand many parts go beyond an introduction an make the user familliar with recent research in the field. For experimental number theoreticians new methods are developed and new results are obtained which are of great importance for them. Both computer scientists interested in higher arithmetic and those teaching algebraic number theory will find the book of value.

Mathematics for Computer Algebra

Mathematics for Computer Algebra PDF Author: Maurice Mignotte
Publisher: Springer Science & Business Media
ISBN: 1461391717
Category : Computers
Languages : en
Pages : 357

Get Book Here

Book Description
This book corresponds to a mathematical course given in 1986/87 at the University Louis Pasteur, Strasbourg. This work is primarily intended for graduate students. The following are necessary prerequisites : a few standard definitions in set theory, the definition of rational integers, some elementary facts in Combinatorics (maybe only Newton's binomial formula), some theorems of Analysis at the level of high schools, and some elementary Algebra (basic results about groups, rings, fields and linear algebra). An important place is given to exercises. These exercises are only rarely direct applications of the course. More often, they constitute complements to the text. Mostly, hints or references are given so that the reader should be able to find solutions. Chapters one and two deal with elementary results of Number Theory, for example : the euclidean algorithm, the Chinese remainder theorem and Fermat's little theorem. These results are useful by themselves, but they also constitute a concrete introduction to some notions in abstract algebra (for example, euclidean rings, principal rings ... ). Algorithms are given for arithmetical operations with long integers. The rest of the book, chapters 3 through 7, deals with polynomials. We give general results on polynomials over arbitrary rings. Then polynomials with complex coefficients are studied in chapter 4, including many estimates on the complex roots of polynomials. Some of these estimates are very useful in the subsequent chapters.