Computation of Special Functions

Computation of Special Functions PDF Author: Shanjie Zhang
Publisher: Wiley-Interscience
ISBN:
Category : Computers
Languages : en
Pages : 752

Get Book Here

Book Description
Computation of Special Functions is a valuable book/software package containing more than 100 original computer programs for the computation of most special functions currently in use. These include many functions commonly omitted from available software packages, such as the Bessel and modified Bessel functions, the Mathieu and modified Mathieu functions, parabolic cylinder functions, and various prolate and oblate spheroidal wave functions. Also, unlike most software packages, this book/disk set gives readers the latitude to modify programs according to the special demands of the sophisticated problems they are working on. The authors provide detailed descriptions of the program's algorithms as well as specific information about each program's internal structure.

Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions

Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions PDF Author: Thomas Trogdon
Publisher: SIAM
ISBN: 1611974194
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
Riemann?Hilbert problems are fundamental objects of study within complex analysis. Many problems in differential equations and integrable systems, probability and random matrix theory, and asymptotic analysis can be solved by reformulation as a Riemann?Hilbert problem.This book, the most comprehensive one to date on the applied and computational theory of Riemann?Hilbert problems, includes an introduction to computational complex analysis, an introduction to the applied theory of Riemann?Hilbert problems from an analytical and numerical perspective, and a discussion of applications to integrable systems, differential equations, and special function theory. It also includes six fundamental examples and five more sophisticated examples of the analytical and numerical Riemann?Hilbert method, each of mathematical or physical significance or both.?

Formulas and Theorems for the Special Functions of Mathematical Physics

Formulas and Theorems for the Special Functions of Mathematical Physics PDF Author: Wilhelm Magnus
Publisher: Springer Science & Business Media
ISBN: 3662117614
Category : Science
Languages : en
Pages : 516

Get Book Here

Book Description
This is a new and enlarged English edition of the book which, under the title "Formeln und Satze fur die Speziellen Funktionen der mathe matischen Physik" appeared in German in 1946. Much of the material (part of it unpublished) did not appear in the earlier editions. We hope that these additions will be useful and yet not too numerous for the purpose of locating .with ease any particular result. Compared to the first two (German) editions a change has taken place as far as the list of references is concerned. They are generally restricted to books and monographs and accomodated at the end of each individual chapter. Occasional references to papers follow those results to which they apply. The authors felt a certain justification for this change. At the time of the appearance of the previous edition nearly twenty years ago much of the material was scattered over a number of single contributions. Since then most of it has been included in books and monographs with quite exhaustive bibliographies. For information about numerical tables the reader is referred to "Mathematics of Computation", a periodical publis hed by the American Mathematical Society; "Handbook of Mathe matical Functions" with formulas, graphs and mathematical tables National Bureau of Standards Applied Mathematics Series, 55, 1964, 1046 pp., Government Printing Office, Washington, D.C., and FLETCHER, MILLER, ROSENHEAD, Index of Mathematical Tables, Addison-Wesley, Reading, Mass.) .. There is a list of symbols and abbreviations at the end of the book.

The Mathematical-Function Computation Handbook

The Mathematical-Function Computation Handbook PDF Author: Nelson H.F. Beebe
Publisher: Springer
ISBN: 3319641107
Category : Computers
Languages : en
Pages : 1145

Get Book Here

Book Description
This highly comprehensive handbook provides a substantial advance in the computation of elementary and special functions of mathematics, extending the function coverage of major programming languages well beyond their international standards, including full support for decimal floating-point arithmetic. Written with clarity and focusing on the C language, the work pays extensive attention to little-understood aspects of floating-point and integer arithmetic, and to software portability, as well as to important historical architectures. It extends support to a future 256-bit, floating-point format offering 70 decimal digits of precision. Select Topics and Features: references an exceptionally useful, author-maintained MathCW website, containing source code for the book’s software, compiled libraries for numerous systems, pre-built C compilers, and other related materials; offers a unique approach to covering mathematical-function computation using decimal arithmetic; provides extremely versatile appendices for interfaces to numerous other languages: Ada, C#, C++, Fortran, Java, and Pascal; presupposes only basic familiarity with computer programming in a common language, as well as early level algebra; supplies a library that readily adapts for existing scripting languages, with minimal effort; supports both binary and decimal arithmetic, in up to 10 different floating-point formats; covers a significant portion (with highly accurate implementations) of the U.S National Institute of Standards and Technology’s 10-year project to codify mathematical functions. This highly practical text/reference is an invaluable tool for advanced undergraduates, recording many lessons of the intermingled history of computer hardw are and software, numerical algorithms, and mathematics. In addition, professional numerical analysts and others will find the handbook of real interest and utility because it builds on research by the mathematical software community over the last four decades.

Numerical Methods for Special Functions

Numerical Methods for Special Functions PDF Author: Amparo Gil
Publisher: SIAM
ISBN: 9780898717822
Category : Mathematics
Languages : en
Pages : 431

Get Book Here

Book Description
Special functions arise in many problems of pure and applied mathematics, mathematical statistics, physics, and engineering. This book provides an up-to-date overview of numerical methods for computing special functions and discusses when to use these methods depending on the function and the range of parameters. Not only are standard and simple parameter domains considered, but methods valid for large and complex parameters are described as well. The first part of the book (basic methods) covers convergent and divergent series, Chebyshev expansions, numerical quadrature, and recurrence relations. Its focus is on the computation of special functions; however, it is suitable for general numerical courses. Pseudoalgorithms are given to help students write their own algorithms. In addition to these basic tools, the authors discuss other useful and efficient methods, such as methods for computing zeros of special functions, uniform asymptotic expansions, Padé approximations, and sequence transformations. The book also provides specific algorithms for computing several special functions (like Airy functions and parabolic cylinder functions, among others).

Handbook of Mathematical Functions

Handbook of Mathematical Functions PDF Author: Milton Abramowitz
Publisher: Courier Corporation
ISBN: 9780486612720
Category : Mathematics
Languages : en
Pages : 1068

Get Book Here

Book Description
An extensive summary of mathematical functions that occur in physical and engineering problems

Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics

Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics PDF Author: Frank G. Garvan
Publisher: Springer Science & Business Media
ISBN: 1461302579
Category : Computers
Languages : en
Pages : 287

Get Book Here

Book Description
These are the proceedings of the conference "Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics" held at the Department of Mathematics, University of Florida, Gainesville, from November 11 to 13, 1999. The main emphasis of the conference was Com puter Algebra (i. e. symbolic computation) and how it related to the fields of Number Theory, Special Functions, Physics and Combinatorics. A subject that is common to all of these fields is q-series. We brought together those who do symbolic computation with q-series and those who need q-series in cluding workers in Physics and Combinatorics. The goal of the conference was to inform mathematicians and physicists who use q-series of the latest developments in the field of q-series and especially how symbolic computa tion has aided these developments. Over 60 people were invited to participate in the conference. We ended up having 45 participants at the conference, including six one hour plenary speakers and 28 half hour speakers. There were talks in all the areas we were hoping for. There were three software demonstrations.

Orthogonal Polynomials and Special Functions

Orthogonal Polynomials and Special Functions PDF Author: Francisco Marcellàn
Publisher: Springer Science & Business Media
ISBN: 3540310622
Category : Mathematics
Languages : en
Pages : 432

Get Book Here

Book Description
Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, but this has now been extended to difference equations, partial differential equations and non-linear differential equations. The present set of lecture notes containes seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions. The topics are: computational methods and software for quadrature and approximation, equilibrium problems in logarithmic potential theory, discrete orthogonal polynomials and convergence of Krylov subspace methods in numerical linear algebra, orthogonal rational functions and matrix orthogonal rational functions, orthogonal polynomials in several variables (Jack polynomials) and separation of variables, a classification of finite families of orthogonal polynomials in Askey’s scheme using Leonard pairs, and non-linear special functions associated with the Painlevé equations.

Mathematical Methods for Engineers and Scientists 3

Mathematical Methods for Engineers and Scientists 3 PDF Author: Kwong-Tin Tang
Publisher: Springer Science & Business Media
ISBN: 3540446958
Category : Science
Languages : en
Pages : 442

Get Book Here

Book Description
Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous examples, completely worked out, together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to make students comfortable in using advanced mathematical tools in junior, senior, and beginning graduate courses.

Functions of Matrices

Functions of Matrices PDF Author: Nicholas J. Higham
Publisher: SIAM
ISBN: 0898717779
Category : Mathematics
Languages : en
Pages : 432

Get Book Here

Book Description
A thorough and elegant treatment of the theory of matrix functions and numerical methods for computing them, including an overview of applications, new and unpublished research results, and improved algorithms. Key features include a detailed treatment of the matrix sign function and matrix roots; a development of the theory of conditioning and properties of the Fre;chet derivative; Schur decomposition; block Parlett recurrence; a thorough analysis of the accuracy, stability, and computational cost of numerical methods; general results on convergence and stability of matrix iterations; and a chapter devoted to the f(A)b problem. Ideal for advanced courses and for self-study, its broad content, references and appendix also make this book a convenient general reference. Contains an extensive collection of problems with solutions and MATLAB implementations of key algorithms.