Computation of Radiative Fields in Opposed-flow Flame Spread in a Microgravity Environment

Computation of Radiative Fields in Opposed-flow Flame Spread in a Microgravity Environment PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 99

Get Book Here

Book Description
The purpose of this thesis is to perform radiation computations in opposed-flow flame spread in a microgravity environment. In this work, the flame spread simulations consider a thermally thin, PMMA fuel in a quiescent, microgravity environment or facing low opposed-flow velocities at ambient conditions of 1 atm and 50-50 volumetric mixture of oxygen and nitrogen. The flame spread model, which is a Computational Fluid Dynamics (CFD) model, is used for numerical simulations in combination with a radiation model. The CFD code is written in FORTRAN language, and a Matlab code is developed for plotting results. The temperature and species fields from CFD computations are used as inputs into the radiation model. Radiative quantities are calculated by using a global balance method along with the total transmittance non-homogeneous model. Radiation effect on thermocouple temperature measurement is investigated. Although this topic is well known, performing radiation correction calculations usually considers surface radiation only and not gas radiation. The inclusion of gas radiation is utilized in predicting the gas temperature that a thermocouple would measure. A narrow bed radiation model is used to determine the average incident radiative flux at a specified location from which a thermocouple temperature measurement is predicted. This study focuses on the quiescent microgravity environment only. The effect of parameters such as thermocouple surface emissivity and bead diameter are also studied. For the main part of this thesis, the effect of gas radiation on the mechanism of flame spread over a thermally thin, solid fuel in microgravity is investigated computationally. Generated radiative fields including thermal and species fields are utilized to investigate the nature of the influence of gas radiation on flame structure as well as its role in the mechanism of opposed-flow flame spread. The opposed-flow configuration considers low flow velocities including a quiescent environment where radiation has been shown to be dominant. However, given the fact that gas radiation acts as a loss mechanism, and at the same time, it enhances forward heat transfer through radiation feedback to the fuel surface, there is no definitive work that establishes the role of gas radiation. This thesis explores the role played by gas radiation as a driving versus as a retarding mechanism. In this work, it is found that gas radiation is important in capturing flame images and spread rates. Gas radiation primarily acts as a loss mechanism through its effects on flame temperature which overwhelms the radiation feedback to the surface.