Compressive Force-Path Method

Compressive Force-Path Method PDF Author: Michael D Kotsovos
Publisher: Springer Science & Business Media
ISBN: 3319004883
Category : Technology & Engineering
Languages : en
Pages : 230

Get Book Here

Book Description
This book presents a method which simplifies and unifies the design of reinforced concrete (RC) structures and is applicable to any structural element under both normal and seismic loading conditions. The proposed method has a sound theoretical basis and is expressed in a unified form applicable to all structural members, as well as their connections. It is applied in practice through the use of simple failure criteria derived from first principles without the need for calibration through the use of experimental data. The method is capable of predicting not only load-carrying capacity but also the locations and modes of failure, as well as safeguarding the structural performance code requirements. In this book, the concepts underlying the method are first presented for the case of simply supported RC beams. The application of the method is progressively extended so as to cover all common structural elements. For each structural element considered, evidence of the validity of the proposed method is presented together with design examples and comparisons with current code specifications. The method has been found to produce design solutions which satisfy the seismic performance requirements of current codes in all cases investigated to date, including structural members such as beams, columns, and walls, beam-to-beam or column-to-column connections, and beam-to-column joints.

Compressive Force-Path Method

Compressive Force-Path Method PDF Author: Michael D Kotsovos
Publisher: Springer Science & Business Media
ISBN: 3319004883
Category : Technology & Engineering
Languages : en
Pages : 230

Get Book Here

Book Description
This book presents a method which simplifies and unifies the design of reinforced concrete (RC) structures and is applicable to any structural element under both normal and seismic loading conditions. The proposed method has a sound theoretical basis and is expressed in a unified form applicable to all structural members, as well as their connections. It is applied in practice through the use of simple failure criteria derived from first principles without the need for calibration through the use of experimental data. The method is capable of predicting not only load-carrying capacity but also the locations and modes of failure, as well as safeguarding the structural performance code requirements. In this book, the concepts underlying the method are first presented for the case of simply supported RC beams. The application of the method is progressively extended so as to cover all common structural elements. For each structural element considered, evidence of the validity of the proposed method is presented together with design examples and comparisons with current code specifications. The method has been found to produce design solutions which satisfy the seismic performance requirements of current codes in all cases investigated to date, including structural members such as beams, columns, and walls, beam-to-beam or column-to-column connections, and beam-to-column joints.

Compressive Force-Path Method

Compressive Force-Path Method PDF Author: Michael D. Kotsovos
Publisher:
ISBN: 9783319004891
Category :
Languages : en
Pages : 240

Get Book Here

Book Description


Compressive Force-Path Method

Compressive Force-Path Method PDF Author: Sevilin Kartal
Publisher:
ISBN: 9781681171135
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This book presents a method which simplifies and unifies the design of reinforced concrete (RC) structures and is applicable to any structural element under both normal and seismic loading conditions. The proposed method has a sound theoretical basis and is expressed in a unified form applicable to all structural members, as well as their connections. It is applied in practice through the use of simple failure criteria derived from first principles without the need for calibration through the use of experimental data. The method is capable of predicting not only load-carrying capacity but also the locations and modes of failure, as well as safeguarding the structural performative code requirements. In this book, the concepts underlying the method are presented for the case of simply supported RC beams. The application of the method is progressively extended so as to cover all common structural elements. For each structural element considered, evidence of the validity of the proposed method is presented together with design examples and comparisons with current code specifications. The method has been found to produce design solutions which satisfy the seismic performance requirements of current codes in all cases investigated to date, including structural members such as beams, columns, and walls, beam-to-beam or column-to-column connections, and beam-to-column joints.

Structural Concrete

Structural Concrete PDF Author: M. D. Kotsovos
Publisher: Thomas Telford
ISBN: 9780727720276
Category : Mathematics
Languages : en
Pages : 568

Get Book Here

Book Description
Shows the unifying generality of the proposed approach and the reliability of the ensuing computer package, for which the sole input is the specified cylinder strength of concrete and the yield is the stress of steel. This book offers an understanding of structural concrete behaviour, and illustrates the revision required for improving methods.

Ultimate Limit-state Design of Concrete Structures

Ultimate Limit-state Design of Concrete Structures PDF Author: M. D. Kotsovos
Publisher: Thomas Telford
ISBN: 9780727726650
Category : Technology & Engineering
Languages : en
Pages : 178

Get Book Here

Book Description
Structural concrete members often show great deviation in structural performance from that predicted by the current code of practice. In certain cases the predications considerably underestimate the capabilities of a structure or member, while in others the predictions are unsafe as they overestimate the member's ability to perform in a prescribed manner. Clearly, a rational and unified design methodology is still lacking for structural concrete. This book presents a simplified methodology based on calculations which are quick, easily programmable and no more complex than those required by the current codes. It involves identifying the regions of a structural member or structure through which the external load is transmitted from its point of application to the supports and then strengthening these regions as required. As most of these regions enclose the trajectories of internal compression actions the technique has been called the 'compressive force path' method. Ultimate limit-state design for concrete structures will provide designers with a practical and easily applied method for the design of a concrete structure, which is fully compatible with the behaviour of concrete (as described by valid experimental evidence) at both the material and structural level.

Infrastructure Risk Assessment & Management

Infrastructure Risk Assessment & Management PDF Author: G. Schleyer
Publisher: WIT Press
ISBN: 1784660930
Category : Technology & Engineering
Languages : en
Pages : 173

Get Book Here

Book Description
Infrastructure Risk Assessment & Management contains selected papers presented at both the 10th International Conference on Computer Simulation in Risk Analysis and Hazard Mitigation and the 14th International Conference on Structures under Shock and Impact, organized by the Wessex Institute. The papers cover a variety of topics, including impact and blast loading, response of buildings and other structures to blast and their dynamic behaviour. These are all areas of active research and general interest, focused on the survivability of physical facilities and the protection of people. It contains a series of research contributions, essential to deepen the knowledge of how structures and materials behave under a wide variety of dynamic load actions. Current events emphasise the importance of the analysis and management of risk to planners, civil authorities, law enforcement agencies, non-governmental organisations, information technology experts and many other researchers and practitioners throughout the world. This volume brings together the work of researchers and other professionals actively involved in finding new ways to cope with the increased demands for a more effective control of impact and blast effects as well as risk management and control.

FRPRCS-5

FRPRCS-5 PDF Author: C. J. Burgoyne
Publisher: Thomas Telford
ISBN: 9780727730299
Category : Architecture
Languages : en
Pages : 592

Get Book Here

Book Description
Fibre reinforced plastics are increasingly being used as replacements for steel reinforcement in concrete structures. The reinforcement can be untensioned, or it can be in the form of prestressing tendons. It is also suitable for gluing onto the outside of a structure to improve flexural or shear performance. This book provides up-to-date research results to give engineers confidence in their design methods.

Structural Concrete

Structural Concrete PDF Author: Salah El-Metwally
Publisher: CRC Press
ISBN: 1351651552
Category : Technology & Engineering
Languages : en
Pages : 261

Get Book Here

Book Description
This book examines the application of strut-and-tie models (STM) for the design of structural concrete. It presents state-of-the-art information, from fundamental theories to practical engineering applications, and also provides innovative solutions for many design problems that are not otherwise achievable using the traditional methods.

Finite-Element Modelling of Structural Concrete

Finite-Element Modelling of Structural Concrete PDF Author: Michael D. Kotsovos
Publisher: CRC Press
ISBN: 1498712312
Category : Technology & Engineering
Languages : en
Pages : 376

Get Book Here

Book Description
A Powerful Tool for the Analysis and Design of Complex Structural ElementsFinite-Element Modelling of Structural Concrete: Short-Term Static and Dynamic Loading Conditions presents a finite-element model of structural concrete under short-term loading, covering the whole range of short-term loading conditions, from static (monotonic and cyclic) to

Structures Strengthened with Bonded Composites

Structures Strengthened with Bonded Composites PDF Author: Zhishen Wu
Publisher: Woodhead Publishing
ISBN: 0128210893
Category : Technology & Engineering
Languages : en
Pages : 558

Get Book Here

Book Description
Structures Strengthened with Bonded Composites presents a comprehensive resource on the strengthening of concrete, reinforced and prestressed concrete, masonry, steel and other composite structures using externally-bonded FRP composites. The book emphasizes a systematic and fundamental investigation on bonding and debonding behavior of the FRP-concrete interface and structural performances of FRP-strengthened structures with a combination of experimental, theoretical and numerical studies. This book will appeal to all those concerned with strengthening and retrofitting of existing structures from the effect of additional anticipated loads in the civil sector. - Discusses the FRP strengthening of different types of structures, including bridges, tunnels, buildings, historic structures and underwater constructions - Establishes a systematic theory on interfacial fracture mechanics and clarifies different debonding mechanisms - Describes design methods and makes comparison of design considerations and methods among different countries - Presents temperature and fatigue effects and long-term behavior for different strengthening methods