Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722115975
Category :
Languages : en
Pages : 28
Book Description
The research was carried out in the Compressible Dynamic Stall Facility, CDSF, at the Fluid Mechanics Laboratory (FML) of NASA Ames Research Center. The facility can produce realistic nondimensional pitch rates experienced by fighter aircraft, which on model scale could be as high as 3600/sec. Nonintrusive optical techniques were used for the measurements. The highlight of the effort was the development of a new real time interferometry method known as Point Diffraction Interferometry - PDI, for use in unsteady separated flows. This can yield instantaneous flow density information (and hence pressure distributions in isentropic flows) over the airfoil. A key finding is that the dynamic stall vortex forms just as the airfoil leading edge separation bubble opens-up. A major result is the observation and quantification of multiple shocks over the airfoil near the leading edge. A quantitative analysis of the PDI images shows that pitching airfoils produce larger suction peaks than steady airfoils at the same Mach number prior to stall. The peak suction level reached just before stall develops is the same at all unsteady rates and decreases with increase in Mach number. The suction is lost once the dynamic stall vortex or vortical structure begins to convect. Based on the knowledge gained from this preliminary analysis of the data, efforts to control dynamic stall were initiated. The focus of this work was to arrive at a dynamically changing leading edge shape that produces only 'acceptable' airfoil pressure distributions over a large angle of attack range. Chandrasekhara, M. S. and Platzer, M. F. Ames Research Center AF-AFOSR-0012-90; AF-AFOSR-0007-91; AF-AFOSR-0004-92; AF PROJ. 2307...
Compressibility Effects on Dynamic Stall of Airfoils Undergoing Rapid Transient Pitching Motion
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722115975
Category :
Languages : en
Pages : 28
Book Description
The research was carried out in the Compressible Dynamic Stall Facility, CDSF, at the Fluid Mechanics Laboratory (FML) of NASA Ames Research Center. The facility can produce realistic nondimensional pitch rates experienced by fighter aircraft, which on model scale could be as high as 3600/sec. Nonintrusive optical techniques were used for the measurements. The highlight of the effort was the development of a new real time interferometry method known as Point Diffraction Interferometry - PDI, for use in unsteady separated flows. This can yield instantaneous flow density information (and hence pressure distributions in isentropic flows) over the airfoil. A key finding is that the dynamic stall vortex forms just as the airfoil leading edge separation bubble opens-up. A major result is the observation and quantification of multiple shocks over the airfoil near the leading edge. A quantitative analysis of the PDI images shows that pitching airfoils produce larger suction peaks than steady airfoils at the same Mach number prior to stall. The peak suction level reached just before stall develops is the same at all unsteady rates and decreases with increase in Mach number. The suction is lost once the dynamic stall vortex or vortical structure begins to convect. Based on the knowledge gained from this preliminary analysis of the data, efforts to control dynamic stall were initiated. The focus of this work was to arrive at a dynamically changing leading edge shape that produces only 'acceptable' airfoil pressure distributions over a large angle of attack range. Chandrasekhara, M. S. and Platzer, M. F. Ames Research Center AF-AFOSR-0012-90; AF-AFOSR-0007-91; AF-AFOSR-0004-92; AF PROJ. 2307...
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722115975
Category :
Languages : en
Pages : 28
Book Description
The research was carried out in the Compressible Dynamic Stall Facility, CDSF, at the Fluid Mechanics Laboratory (FML) of NASA Ames Research Center. The facility can produce realistic nondimensional pitch rates experienced by fighter aircraft, which on model scale could be as high as 3600/sec. Nonintrusive optical techniques were used for the measurements. The highlight of the effort was the development of a new real time interferometry method known as Point Diffraction Interferometry - PDI, for use in unsteady separated flows. This can yield instantaneous flow density information (and hence pressure distributions in isentropic flows) over the airfoil. A key finding is that the dynamic stall vortex forms just as the airfoil leading edge separation bubble opens-up. A major result is the observation and quantification of multiple shocks over the airfoil near the leading edge. A quantitative analysis of the PDI images shows that pitching airfoils produce larger suction peaks than steady airfoils at the same Mach number prior to stall. The peak suction level reached just before stall develops is the same at all unsteady rates and decreases with increase in Mach number. The suction is lost once the dynamic stall vortex or vortical structure begins to convect. Based on the knowledge gained from this preliminary analysis of the data, efforts to control dynamic stall were initiated. The focus of this work was to arrive at a dynamically changing leading edge shape that produces only 'acceptable' airfoil pressure distributions over a large angle of attack range. Chandrasekhara, M. S. and Platzer, M. F. Ames Research Center AF-AFOSR-0012-90; AF-AFOSR-0007-91; AF-AFOSR-0004-92; AF PROJ. 2307...
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 772
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 772
Book Description
Monthly Catalog of United States Government Publications
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages :
Book Description
Monthly Catalogue, United States Public Documents
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1064
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1064
Book Description
Aeronautical Enginnering: A Cumulative Index to a Continuing Bibliography (supplement 312)
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 392
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 392
Book Description
NASA SP.
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 580
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 580
Book Description
Government Reports Announcements & Index
Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 968
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 968
Book Description
Introduction to Aircraft Flight Mechanics
Author: Thomas R. Yechout
Publisher: AIAA
ISBN: 9781600860782
Category : Aerodynamics
Languages : en
Pages : 666
Book Description
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Publisher: AIAA
ISBN: 9781600860782
Category : Aerodynamics
Languages : en
Pages : 666
Book Description
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
International Aerospace Abstracts
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1146
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1146
Book Description
Government Reports Annual Index
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1400
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1400
Book Description