Author: J. Ricard
Publisher: Elsevier
ISBN: 0080860958
Category : Science
Languages : en
Pages : 369
Book Description
The aim of this book is to show how supramolecular complexity of cell organization can dramatically alter the functions of individual macromolecules within a cell. The emergence of new functions which appear as a consequence of supramolecular complexity, is explained in terms of physical chemistry. The book is interdisciplinary, at the border between cell biochemistry, physics and physical chemistry. This interdisciplinarity does not result in the use of physical techniques but from the use of physical concepts to study biological problems. In the domain of complexity studies, most works are purely theoretical or based on computer simulation. The present book is partly theoretical, partly experimental and theory is always based on experimental results. Moreover, the book encompasses in a unified manner the dynamic aspects of many different biological fields ranging from dynamics to pattern emergence in a young embryo. The volume puts emphasis on dynamic physical studies of biological events. It also develops, in a unified perspective, this new interdisciplinary approach of various important problems of cell biology and chemistry, ranging from enzyme dynamics to pattern formation during embryo development, thus paving the way to what may become a central issue of future biology.
Biological Complexity and the Dynamics of Life Processes
Author: J. Ricard
Publisher: Elsevier
ISBN: 0080860958
Category : Science
Languages : en
Pages : 369
Book Description
The aim of this book is to show how supramolecular complexity of cell organization can dramatically alter the functions of individual macromolecules within a cell. The emergence of new functions which appear as a consequence of supramolecular complexity, is explained in terms of physical chemistry. The book is interdisciplinary, at the border between cell biochemistry, physics and physical chemistry. This interdisciplinarity does not result in the use of physical techniques but from the use of physical concepts to study biological problems. In the domain of complexity studies, most works are purely theoretical or based on computer simulation. The present book is partly theoretical, partly experimental and theory is always based on experimental results. Moreover, the book encompasses in a unified manner the dynamic aspects of many different biological fields ranging from dynamics to pattern emergence in a young embryo. The volume puts emphasis on dynamic physical studies of biological events. It also develops, in a unified perspective, this new interdisciplinary approach of various important problems of cell biology and chemistry, ranging from enzyme dynamics to pattern formation during embryo development, thus paving the way to what may become a central issue of future biology.
Publisher: Elsevier
ISBN: 0080860958
Category : Science
Languages : en
Pages : 369
Book Description
The aim of this book is to show how supramolecular complexity of cell organization can dramatically alter the functions of individual macromolecules within a cell. The emergence of new functions which appear as a consequence of supramolecular complexity, is explained in terms of physical chemistry. The book is interdisciplinary, at the border between cell biochemistry, physics and physical chemistry. This interdisciplinarity does not result in the use of physical techniques but from the use of physical concepts to study biological problems. In the domain of complexity studies, most works are purely theoretical or based on computer simulation. The present book is partly theoretical, partly experimental and theory is always based on experimental results. Moreover, the book encompasses in a unified manner the dynamic aspects of many different biological fields ranging from dynamics to pattern emergence in a young embryo. The volume puts emphasis on dynamic physical studies of biological events. It also develops, in a unified perspective, this new interdisciplinary approach of various important problems of cell biology and chemistry, ranging from enzyme dynamics to pattern formation during embryo development, thus paving the way to what may become a central issue of future biology.
Introduction to Complexity and Complex Systems
Author: Robert B. Northrop
Publisher: CRC Press
ISBN: 1439894981
Category : Medical
Languages : en
Pages : 542
Book Description
The boundaries between simple and complicated, and complicated and complex system designations are fuzzy and debatable, even using quantitative measures of complexity. However, if you are a biomedical engineer, a biologist, physiologist, economist, politician, stock market speculator, or politician, you have encountered complex systems. Furthermore, your success depends on your ability to successfully interact with and manage a variety of complex systems. In order not to be blindsided by unexpected results, we need a systematic, comprehensive way of analyzing, modeling, and simulating complex systems to predict non-anticipated outcomes. In its engaging first chapters, the book introduces complex systems, Campbell's Law, and the Law of Unintended Consequences, and mathematics necessary for conversations in complex systems. Subsequent chapters illustrate concepts via commonly studied biological mechanisms. The final chapters focus on higher-level complexity problems, and introduce complexity in economic systems. Designed as a reference for biologists and biological engineers, Introduction to Complexity and Complex Systems lends itself to use in a classroom course to introduce advanced students studying biomedical engineering, biophysics, or physiology to complex systems. Engaging and illustrative, this book aids scientists and decision makers in managing biological complexity and complex systems.
Publisher: CRC Press
ISBN: 1439894981
Category : Medical
Languages : en
Pages : 542
Book Description
The boundaries between simple and complicated, and complicated and complex system designations are fuzzy and debatable, even using quantitative measures of complexity. However, if you are a biomedical engineer, a biologist, physiologist, economist, politician, stock market speculator, or politician, you have encountered complex systems. Furthermore, your success depends on your ability to successfully interact with and manage a variety of complex systems. In order not to be blindsided by unexpected results, we need a systematic, comprehensive way of analyzing, modeling, and simulating complex systems to predict non-anticipated outcomes. In its engaging first chapters, the book introduces complex systems, Campbell's Law, and the Law of Unintended Consequences, and mathematics necessary for conversations in complex systems. Subsequent chapters illustrate concepts via commonly studied biological mechanisms. The final chapters focus on higher-level complexity problems, and introduce complexity in economic systems. Designed as a reference for biologists and biological engineers, Introduction to Complexity and Complex Systems lends itself to use in a classroom course to introduce advanced students studying biomedical engineering, biophysics, or physiology to complex systems. Engaging and illustrative, this book aids scientists and decision makers in managing biological complexity and complex systems.
Self-organization in Biological Systems
Author: Scott Camazine
Publisher: Princeton University Press
ISBN: 9780691116242
Category : Art
Languages : en
Pages : 558
Book Description
Biological structures built through mechanisms involving self-organization are examined in this text. Examples of such structures are termite mounds, which provide their inhabitants with a secure & stable environment. The text looks at why & how self-organization occurs in nature.
Publisher: Princeton University Press
ISBN: 9780691116242
Category : Art
Languages : en
Pages : 558
Book Description
Biological structures built through mechanisms involving self-organization are examined in this text. Examples of such structures are termite mounds, which provide their inhabitants with a secure & stable environment. The text looks at why & how self-organization occurs in nature.
The Biopsychosocial Model of Health and Disease
Author: Derek Bolton
Publisher: Springer
ISBN: 3030118991
Category : Psychology
Languages : en
Pages : 157
Book Description
This open access book is a systematic update of the philosophical and scientific foundations of the biopsychosocial model of health, disease and healthcare. First proposed by George Engel 40 years ago, the Biopsychosocial Model is much cited in healthcare settings worldwide, but has been increasingly criticised for being vague, lacking in content, and in need of reworking in the light of recent developments. The book confronts the rapid changes to psychological science, neuroscience, healthcare, and philosophy that have occurred since the model was first proposed and addresses key issues such as the model’s scientific basis, clinical utility, and philosophical coherence. The authors conceptualise biology and the psychosocial as in the same ontological space, interlinked by systems of communication-based regulatory control which constitute a new kind of causation. These are distinguished from physical and chemical laws, most clearly because they can break down, thus providing the basis for difference between health and disease. This work offers an urgent update to the model’s scientific and philosophical foundations, providing a new and coherent account of causal interactions between the biological, the psychological and social.
Publisher: Springer
ISBN: 3030118991
Category : Psychology
Languages : en
Pages : 157
Book Description
This open access book is a systematic update of the philosophical and scientific foundations of the biopsychosocial model of health, disease and healthcare. First proposed by George Engel 40 years ago, the Biopsychosocial Model is much cited in healthcare settings worldwide, but has been increasingly criticised for being vague, lacking in content, and in need of reworking in the light of recent developments. The book confronts the rapid changes to psychological science, neuroscience, healthcare, and philosophy that have occurred since the model was first proposed and addresses key issues such as the model’s scientific basis, clinical utility, and philosophical coherence. The authors conceptualise biology and the psychosocial as in the same ontological space, interlinked by systems of communication-based regulatory control which constitute a new kind of causation. These are distinguished from physical and chemical laws, most clearly because they can break down, thus providing the basis for difference between health and disease. This work offers an urgent update to the model’s scientific and philosophical foundations, providing a new and coherent account of causal interactions between the biological, the psychological and social.
Biological Complexity and Integrative Pluralism
Author: Sandra D. Mitchell
Publisher: Cambridge University Press
ISBN: 9780521520799
Category : Philosophy
Languages : en
Pages : 264
Book Description
Sample Text
Publisher: Cambridge University Press
ISBN: 9780521520799
Category : Philosophy
Languages : en
Pages : 264
Book Description
Sample Text
Self-Organized Biological Dynamics and Nonlinear Control
Author: Jan Walleczek
Publisher: Cambridge University Press
ISBN: 1139427598
Category : Science
Languages : en
Pages : 444
Book Description
The growing impact of nonlinear science on biology and medicine is fundamentally changing our view of living organisms and disease processes. This book introduces the application to biomedicine of a broad range of interdisciplinary concepts from nonlinear dynamics, such as self-organization, complexity, coherence, stochastic resonance, fractals and chaos. It comprises 18 chapters written by leading figures in the field and covers experimental and theoretical research, as well as the emerging technological possibilities such as nonlinear control techniques for treating pathological biodynamics, including heart arrhythmias and epilepsy. This book will attract the interest of professionals and students from a wide range of disciplines, including physicists, chemists, biologists, sensory physiologists and medical researchers such as cardiologists, neurologists and biomedical engineers.
Publisher: Cambridge University Press
ISBN: 1139427598
Category : Science
Languages : en
Pages : 444
Book Description
The growing impact of nonlinear science on biology and medicine is fundamentally changing our view of living organisms and disease processes. This book introduces the application to biomedicine of a broad range of interdisciplinary concepts from nonlinear dynamics, such as self-organization, complexity, coherence, stochastic resonance, fractals and chaos. It comprises 18 chapters written by leading figures in the field and covers experimental and theoretical research, as well as the emerging technological possibilities such as nonlinear control techniques for treating pathological biodynamics, including heart arrhythmias and epilepsy. This book will attract the interest of professionals and students from a wide range of disciplines, including physicists, chemists, biologists, sensory physiologists and medical researchers such as cardiologists, neurologists and biomedical engineers.
Encyclopedia of Complexity and Systems Science
Author:
Publisher: Springer
ISBN: 9780387758886
Category : Science
Languages : en
Pages : 10398
Book Description
This encyclopedia provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. It links fundamental concepts of mathematics and computational sciences to applications in the physical sciences, engineering, biomedicine, economics and the social sciences.
Publisher: Springer
ISBN: 9780387758886
Category : Science
Languages : en
Pages : 10398
Book Description
This encyclopedia provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. It links fundamental concepts of mathematics and computational sciences to applications in the physical sciences, engineering, biomedicine, economics and the social sciences.
The Engine of Complexity
Author: John E. Mayfield
Publisher: Columbia University Press
ISBN: 0231535287
Category : Science
Languages : en
Pages : 417
Book Description
The concepts of evolution and complexity theory have become part of the intellectual ether permeating the life sciences, the social and behavioral sciences, and, more recently, management science and economics. In this book, John E. Mayfield elegantly synthesizes core concepts from multiple disciplines to offer a new approach to understanding how evolution works and how complex organisms, structures, organizations, and social orders can and do arise based on information theory and computational science. Intended for the intellectually adventuresome, this book challenges and rewards readers with a nuanced understanding of evolution and complexity that offers consistent, durable, and coherent explanations for major aspects of our life experiences. Numerous examples throughout the book illustrate evolution and complexity formation in action and highlight the core function of computation lying at the work's heart.
Publisher: Columbia University Press
ISBN: 0231535287
Category : Science
Languages : en
Pages : 417
Book Description
The concepts of evolution and complexity theory have become part of the intellectual ether permeating the life sciences, the social and behavioral sciences, and, more recently, management science and economics. In this book, John E. Mayfield elegantly synthesizes core concepts from multiple disciplines to offer a new approach to understanding how evolution works and how complex organisms, structures, organizations, and social orders can and do arise based on information theory and computational science. Intended for the intellectually adventuresome, this book challenges and rewards readers with a nuanced understanding of evolution and complexity that offers consistent, durable, and coherent explanations for major aspects of our life experiences. Numerous examples throughout the book illustrate evolution and complexity formation in action and highlight the core function of computation lying at the work's heart.
Complexity
Author: John Henry Holland
Publisher: Oxford University Press, USA
ISBN: 0199662541
Category : History
Languages : en
Pages : 121
Book Description
In this very short introduction, John Holland presents an introduction to the science of complexity. Using examples from biology and economics, he shows how complexity science models the behaviour of complex systems.
Publisher: Oxford University Press, USA
ISBN: 0199662541
Category : History
Languages : en
Pages : 121
Book Description
In this very short introduction, John Holland presents an introduction to the science of complexity. Using examples from biology and economics, he shows how complexity science models the behaviour of complex systems.
Research at the Intersection of the Physical and Life Sciences
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309147514
Category : Science
Languages : en
Pages : 122
Book Description
Traditionally, the natural sciences have been divided into two branches: the biological sciences and the physical sciences. Today, an increasing number of scientists are addressing problems lying at the intersection of the two. These problems are most often biological in nature, but examining them through the lens of the physical sciences can yield exciting results and opportunities. For example, one area producing effective cross-discipline research opportunities centers on the dynamics of systems. Equilibrium, multistability, and stochastic behavior-concepts familiar to physicists and chemists-are now being used to tackle issues associated with living systems such as adaptation, feedback, and emergent behavior. Research at the Intersection of the Physical and Life Sciences discusses how some of the most important scientific and societal challenges can be addressed, at least in part, by collaborative research that lies at the intersection of traditional disciplines, including biology, chemistry, and physics. This book describes how some of the mysteries of the biological world are being addressed using tools and techniques developed in the physical sciences, and identifies five areas of potentially transformative research. Work in these areas would have significant impact in both research and society at large by expanding our understanding of the physical world and by revealing new opportunities for advancing public health, technology, and stewardship of the environment. This book recommends several ways to accelerate such cross-discipline research. Many of these recommendations are directed toward those administering the faculties and resources of our great research institutions-and the stewards of our research funders, making this book an excellent resource for academic and research institutions, scientists, universities, and federal and private funding agencies.
Publisher: National Academies Press
ISBN: 0309147514
Category : Science
Languages : en
Pages : 122
Book Description
Traditionally, the natural sciences have been divided into two branches: the biological sciences and the physical sciences. Today, an increasing number of scientists are addressing problems lying at the intersection of the two. These problems are most often biological in nature, but examining them through the lens of the physical sciences can yield exciting results and opportunities. For example, one area producing effective cross-discipline research opportunities centers on the dynamics of systems. Equilibrium, multistability, and stochastic behavior-concepts familiar to physicists and chemists-are now being used to tackle issues associated with living systems such as adaptation, feedback, and emergent behavior. Research at the Intersection of the Physical and Life Sciences discusses how some of the most important scientific and societal challenges can be addressed, at least in part, by collaborative research that lies at the intersection of traditional disciplines, including biology, chemistry, and physics. This book describes how some of the mysteries of the biological world are being addressed using tools and techniques developed in the physical sciences, and identifies five areas of potentially transformative research. Work in these areas would have significant impact in both research and society at large by expanding our understanding of the physical world and by revealing new opportunities for advancing public health, technology, and stewardship of the environment. This book recommends several ways to accelerate such cross-discipline research. Many of these recommendations are directed toward those administering the faculties and resources of our great research institutions-and the stewards of our research funders, making this book an excellent resource for academic and research institutions, scientists, universities, and federal and private funding agencies.