The Analysis of Linear Partial Differential Operators II

The Analysis of Linear Partial Differential Operators II PDF Author: Lars Hörmander
Publisher: Springer Science & Business Media
ISBN: 9783540225164
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
Author received the 1962 Fields Medal Author received the 1988 Wolf Prize (honoring achievemnets of a lifetime) Author is leading expert in partial differential equations

The Analysis of Linear Partial Differential Operators II

The Analysis of Linear Partial Differential Operators II PDF Author: Lars Hörmander
Publisher: Springer Science & Business Media
ISBN: 9783540225164
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
Author received the 1962 Fields Medal Author received the 1988 Wolf Prize (honoring achievemnets of a lifetime) Author is leading expert in partial differential equations

Complexes of Differential Operators

Complexes of Differential Operators PDF Author: Nikolai Tarkhanov
Publisher: Springer Science & Business Media
ISBN: 9401103275
Category : Mathematics
Languages : en
Pages : 407

Get Book Here

Book Description
This book gives a systematic account of the facts concerning complexes of differential operators on differentiable manifolds. The central place is occupied by the study of general complexes of differential operators between sections of vector bundles. Although the global situation often contains nothing new as compared with the local one (that is, complexes of partial differential operators on an open subset of ]Rn), the invariant language allows one to simplify the notation and to distinguish better the algebraic nature of some questions. In the last 2 decades within the general theory of complexes of differential operators, the following directions were delineated: 1) the formal theory; 2) the existence theory; 3) the problem of global solvability; 4) overdetermined boundary problems; 5) the generalized Lefschetz theory of fixed points, and 6) the qualitative theory of solutions of overdetermined systems. All of these problems are reflected in this book to some degree. It is superfluous to say that different directions sometimes whimsically intersect. Considerable attention is given to connections and parallels with the theory of functions of several complex variables. One of the reproaches avowed beforehand by the author consists of the shortage of examples. The framework of the book has not permitted their number to be increased significantly. Certain parts of the book consist of results obtained by the author in 1977-1986. They have been presented in seminars in Krasnoyarsk, Moscow, Ekaterinburg, and N ovosi birsk.

Partial Differential Equations in Several Complex Variables

Partial Differential Equations in Several Complex Variables PDF Author: So-chin Chen
Publisher: American Mathematical Soc.
ISBN: 9780821829615
Category : Mathematics
Languages : en
Pages : 396

Get Book Here

Book Description
This book is intended as both an introductory text and a reference book for those interested in studying several complex variables in the context of partial differential equations. In the last few decades, significant progress has been made in the study of Cauchy-Riemann and tangential Cauchy-Riemann operators; this progress greatly influenced the development of PDEs and several complex variables. After the background material in complex analysis is developed in Chapters 1 to 3, thenext three chapters are devoted to the solvability and regularity of the Cauchy-Riemann equations using Hilbert space techniques. The authors provide a systematic study of the Cauchy-Riemann equations and the \bar\partial-Neumann problem, including Hórmander's L2 existence progress on the globalregularity and irregularity of the \bar\partial-Neumann operators. The second part of the book gives a comprehensive study of the tangential Cauchy-Riemann equations, another important class of equations in several complex variables first studied by Lewy. An up-to-date account of the L2 theory for \bar\partial b operator is given. Explicit integral solution representations are constructed both on the Heisenberg groups and on strictly convex boundaries with estimates in Hölder and L2spaces. Embeddability of abstract CR structures is discussed in detail here for the first time.Titles in this series are co-published with International Press, Cambridge, MA.

Multidimensional Complex Analysis and Partial Differential Equations

Multidimensional Complex Analysis and Partial Differential Equations PDF Author: Francois Treves
Publisher: American Mathematical Soc.
ISBN: 0821805096
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
This collection of papers by outstanding contributors in analysis, partial differential equations and several complex variables is dedicated to Professor Treves in honour of his 65th birthday. There are five excellent survey articles covering analytic singularities, holomorphically nondegenerate algebraic hypersurfaces, analyticity of CR mappings, removable singularities of vector fields and local solvability for systems of vector fields. The other papers are original research contributions on topics such as Klein-Gordon and Dirac equations, Toeplitz operators, elliptic structures, complexification of Lie groups, and pseudo-differential operators.

Complexes of Partial Differential Operators

Complexes of Partial Differential Operators PDF Author: Aldo Andreotti
Publisher:
ISBN: 9780300018875
Category : Complexes
Languages : en
Pages : 49

Get Book Here

Book Description


Partial Differential Equations and Complex Analysis

Partial Differential Equations and Complex Analysis PDF Author: Steven G. Krantz
Publisher: CRC Press
ISBN: 1351425811
Category : Mathematics
Languages : en
Pages : 320

Get Book Here

Book Description
Ever since the groundbreaking work of J.J. Kohn in the early 1960s, there has been a significant interaction between the theory of partial differential equations and the function theory of several complex variables. Partial Differential Equations and Complex Analysis explores the background and plumbs the depths of this symbiosis. The book is an excellent introduction to a variety of topics and presents many of the basic elements of linear partial differential equations in the context of how they are applied to the study of complex analysis. The author treats the Dirichlet and Neumann problems for elliptic equations and the related Schauder regularity theory, and examines how those results apply to the boundary regularity of biholomorphic mappings. He studies the ?-Neumann problem, then considers applications to the complex function theory of several variables and to the Bergman projection.

Complexes of Partial Differential Operators

Complexes of Partial Differential Operators PDF Author: Aldo Andreotti
Publisher:
ISBN: 9780835791069
Category :
Languages : en
Pages : 59

Get Book Here

Book Description


Symmetries and Overdetermined Systems of Partial Differential Equations

Symmetries and Overdetermined Systems of Partial Differential Equations PDF Author: Michael Eastwood
Publisher: Springer Science & Business Media
ISBN: 0387738312
Category : Mathematics
Languages : en
Pages : 565

Get Book Here

Book Description
This three-week summer program considered the symmetries preserving various natural geometric structures. There are two parts to the proceedings. The articles in the first part are expository but all contain significant new material. The articles in the second part are concerned with original research. All articles were thoroughly refereed and the range of interrelated work ensures that this will be an extremely useful collection.

Cohomological Analysis of Partial Differential Equations and Secondary Calculus

Cohomological Analysis of Partial Differential Equations and Secondary Calculus PDF Author: A. M. Vinogradov
Publisher: American Mathematical Soc.
ISBN: 9780821897997
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description
This book is dedicated to fundamentals of a new theory, which is an analog of affine algebraic geometry for (nonlinear) partial differential equations. This theory grew up from the classical geometry of PDE's originated by S. Lie and his followers by incorporating some nonclassical ideas from the theory of integrable systems, the formal theory of PDE's in its modern cohomological form given by D. Spencer and H. Goldschmidt and differential calculus over commutative algebras (Primary Calculus). The main result of this synthesis is Secondary Calculus on diffieties, new geometrical objects which are analogs of algebraic varieties in the context of (nonlinear) PDE's. Secondary Calculus surprisingly reveals a deep cohomological nature of the general theory of PDE's and indicates new directions of its further progress. Recent developments in quantum field theory showed Secondary Calculus to be its natural language, promising a nonperturbative formulation of the theory. In addition to PDE's themselves, the author describes existing and potential applications of Secondary Calculus ranging from algebraic geometry to field theory, classical and quantum, including areas such as characteristic classes, differential invariants, theory of geometric structures, variational calculus, control theory, etc. This book, focused mainly on theoretical aspects, forms a natural dipole with Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Volume 182 in this same series, Translations of Mathematical Monographs, and shows the theory "in action".

The Analysis of Linear Partial Differential Operators III

The Analysis of Linear Partial Differential Operators III PDF Author: Lars Hörmander
Publisher: Springer Science & Business Media
ISBN: 3540499377
Category : Mathematics
Languages : en
Pages : 537

Get Book Here

Book Description
From the reviews: "Volumes III and IV complete L. Hörmander's treatise on linear partial differential equations. They constitute the most complete and up-to-date account of this subject, by the author who has dominated it and made the most significant contributions in the last decades.....It is a superb book, which must be present in every mathematical library, and an indispensable tool for all - young and old - interested in the theory of partial differential operators." L. Boutet de Monvel in Bulletin of the American Mathematical Society, 1987. "This treatise is outstanding in every respect and must be counted among the great books in mathematics. It is certainly no easy reading (...) but a careful study is extremely rewarding for its wealth of ideas and techniques and the beauty of presentation." J. Brüning in Zentralblatt MATH, 1987.