Author: Edison T. Liu
Publisher: Academic Press
ISBN: 0080919839
Category : Science
Languages : en
Pages : 450
Book Description
Systems biology is a critical emerging field that quantifies and annotates the complexity of biological systems in order to construct algorithmic models to predict outcomes from component input. Applications in medicine are revolutionizing our understanding of biological processes and systems. Systems Biomedicine is organized around foundations, computational modeling, network biology, and integrative biology, with the extension of examples from human biology and pharmacology, to focus on the applications of systems approaches to medical problems. An integrative approach to the underlying genomic, proteomic, and computational biology principles provides researchers with guidance in the use of qualitative systems and hypothesis generators. To reflect the highly interdisciplinary nature of the field, careful detail has been extended to ensure explanations of complex mathematical and biological principles are clear with minimum technical jargon. - Organized to reflect the important distinguishing characteristics of systems strategies in experimental biology and medicine - Provides precise and comprehensive measurement tools for constructing a model of the system and tools for defining complexity as an experimental dependent variable - Includes a thorough discussion of the applications of quantitative principles to biomedical problems
Complex Systems Science in Biomedicine
Author: Thomas Deisboeck
Publisher: Springer Science & Business Media
ISBN: 0387335323
Category : Medical
Languages : en
Pages : 857
Book Description
Complex Systems Science in Biomedicine Thomas S. Deisboeck and J. Yasha Kresh Complex Systems Science in Biomedicine covers the emerging field of systems science involving the application of physics, mathematics, engineering and computational methods and techniques to the study of biomedicine including nonlinear dynamics at the molecular, cellular, multi-cellular tissue, and organismic level. With all chapters helmed by leading scientists in the field, Complex Systems Science in Biomedicine's goal is to offer its audience a timely compendium of the ongoing research directed to the understanding of biological processes as whole systems instead of as isolated component parts. In Parts I & II, Complex Systems Science in Biomedicine provides a general systems thinking perspective and presents some of the fundamental theoretical underpinnings of this rapidly emerging field. Part III then follows with a multi-scaled approach, spanning from the molecular to macroscopic level, exemplified by studying such diverse areas as molecular networks and developmental processes, the immune and nervous systems, the heart, cancer and multi-organ failure. The volume concludes with Part IV that addresses methods and techniques driven in design and development by this new understanding of biomedical science. Key Topics Include: • Historic Perspectives of General Systems Thinking • Fundamental Methods and Techniques for Studying Complex Dynamical Systems • Applications from Molecular Networks to Disease Processes • Enabling Technologies for Exploration of Systems in the Life Sciences Complex Systems Science in Biomedicine is essential reading for experimental, theoretical, and interdisciplinary scientists working in the biomedical research field interested in a comprehensive overview of this rapidly emerging field. About the Editors: Thomas S. Deisboeck is currently Assistant Professor of Radiology at Massachusetts General Hospital and Harvard Medical School in Boston. An expert in interdisciplinary cancer modeling, Dr. Deisboeck is Director of the Complex Biosystems Modeling Laboratory which is part of the Harvard-MIT Martinos Center for Biomedical Imaging. J. Yasha Kresh is currently Professor of Cardiothoracic Surgery and Research Director, Professor of Medicine and Director of Cardiovascular Biophysics at the Drexel University College of Medicine. An expert in dynamical systems, he holds appointments in the School of Biomedical Engineering and Health Systems, Dept. of Mechanical Engineering and Molecular Pathobiology Program. Prof. Kresh is Fellow of the American College of Cardiology, American Heart Association, Biomedical Engineering Society, American Institute for Medical and Biological Engineering.
Publisher: Springer Science & Business Media
ISBN: 0387335323
Category : Medical
Languages : en
Pages : 857
Book Description
Complex Systems Science in Biomedicine Thomas S. Deisboeck and J. Yasha Kresh Complex Systems Science in Biomedicine covers the emerging field of systems science involving the application of physics, mathematics, engineering and computational methods and techniques to the study of biomedicine including nonlinear dynamics at the molecular, cellular, multi-cellular tissue, and organismic level. With all chapters helmed by leading scientists in the field, Complex Systems Science in Biomedicine's goal is to offer its audience a timely compendium of the ongoing research directed to the understanding of biological processes as whole systems instead of as isolated component parts. In Parts I & II, Complex Systems Science in Biomedicine provides a general systems thinking perspective and presents some of the fundamental theoretical underpinnings of this rapidly emerging field. Part III then follows with a multi-scaled approach, spanning from the molecular to macroscopic level, exemplified by studying such diverse areas as molecular networks and developmental processes, the immune and nervous systems, the heart, cancer and multi-organ failure. The volume concludes with Part IV that addresses methods and techniques driven in design and development by this new understanding of biomedical science. Key Topics Include: • Historic Perspectives of General Systems Thinking • Fundamental Methods and Techniques for Studying Complex Dynamical Systems • Applications from Molecular Networks to Disease Processes • Enabling Technologies for Exploration of Systems in the Life Sciences Complex Systems Science in Biomedicine is essential reading for experimental, theoretical, and interdisciplinary scientists working in the biomedical research field interested in a comprehensive overview of this rapidly emerging field. About the Editors: Thomas S. Deisboeck is currently Assistant Professor of Radiology at Massachusetts General Hospital and Harvard Medical School in Boston. An expert in interdisciplinary cancer modeling, Dr. Deisboeck is Director of the Complex Biosystems Modeling Laboratory which is part of the Harvard-MIT Martinos Center for Biomedical Imaging. J. Yasha Kresh is currently Professor of Cardiothoracic Surgery and Research Director, Professor of Medicine and Director of Cardiovascular Biophysics at the Drexel University College of Medicine. An expert in dynamical systems, he holds appointments in the School of Biomedical Engineering and Health Systems, Dept. of Mechanical Engineering and Molecular Pathobiology Program. Prof. Kresh is Fellow of the American College of Cardiology, American Heart Association, Biomedical Engineering Society, American Institute for Medical and Biological Engineering.
Systems Biomedicine
Author: Edison T. Liu
Publisher: Academic Press
ISBN: 0080919839
Category : Science
Languages : en
Pages : 450
Book Description
Systems biology is a critical emerging field that quantifies and annotates the complexity of biological systems in order to construct algorithmic models to predict outcomes from component input. Applications in medicine are revolutionizing our understanding of biological processes and systems. Systems Biomedicine is organized around foundations, computational modeling, network biology, and integrative biology, with the extension of examples from human biology and pharmacology, to focus on the applications of systems approaches to medical problems. An integrative approach to the underlying genomic, proteomic, and computational biology principles provides researchers with guidance in the use of qualitative systems and hypothesis generators. To reflect the highly interdisciplinary nature of the field, careful detail has been extended to ensure explanations of complex mathematical and biological principles are clear with minimum technical jargon. - Organized to reflect the important distinguishing characteristics of systems strategies in experimental biology and medicine - Provides precise and comprehensive measurement tools for constructing a model of the system and tools for defining complexity as an experimental dependent variable - Includes a thorough discussion of the applications of quantitative principles to biomedical problems
Publisher: Academic Press
ISBN: 0080919839
Category : Science
Languages : en
Pages : 450
Book Description
Systems biology is a critical emerging field that quantifies and annotates the complexity of biological systems in order to construct algorithmic models to predict outcomes from component input. Applications in medicine are revolutionizing our understanding of biological processes and systems. Systems Biomedicine is organized around foundations, computational modeling, network biology, and integrative biology, with the extension of examples from human biology and pharmacology, to focus on the applications of systems approaches to medical problems. An integrative approach to the underlying genomic, proteomic, and computational biology principles provides researchers with guidance in the use of qualitative systems and hypothesis generators. To reflect the highly interdisciplinary nature of the field, careful detail has been extended to ensure explanations of complex mathematical and biological principles are clear with minimum technical jargon. - Organized to reflect the important distinguishing characteristics of systems strategies in experimental biology and medicine - Provides precise and comprehensive measurement tools for constructing a model of the system and tools for defining complexity as an experimental dependent variable - Includes a thorough discussion of the applications of quantitative principles to biomedical problems
Complex Systems in Medicine
Author: David C. Aron
Publisher: Springer Nature
ISBN: 3030245934
Category : Medical
Languages : en
Pages : 253
Book Description
This unique title explores complex systems in clinical medicine and the subsequent implementation of that knowledge into practice. Written conversationally and as a reflection on the journey of learning about complex systems, the book explores how knowledge of these systems can be applied to four key roles in academic medicine: clinical practice, education, research, and administration. Further, this title emphasizes how gaining an understanding of complex systems can greatly help a physician deal with the many challenges found in academic medicine. Unlike other books on complexity in medicine, which tend to focus on only one aspect of the management of patients, Complex Systems in Medicine deals with the multifaceted roles of a physician. The approach in this book is uniquely qualitative rather than mathematical, and is written to make it not only of interest to physicians, trainees, and allied health providers, but also to make it more accessible to a non-medical audience. The inclusion of personal anecdotes by the author provides concrete examples of the application of knowledge of complex systems in academic medicine. A first-of-its-kind contribution to the literature, Complex Systems in Medicine: A Hedgehog’s Tale of Complexity in Clinical Practice, Research, Education, and Management is not only a novel reference for medical professionals, it is an accessible tool for the non-medical audience hoping to learn more about complex systems and their direct relevance to medicine, a field that deals with the infinite variety of humans and their ills. It illustrates the consequences of the interactive elements of patient care that make medicine both a science and an art.
Publisher: Springer Nature
ISBN: 3030245934
Category : Medical
Languages : en
Pages : 253
Book Description
This unique title explores complex systems in clinical medicine and the subsequent implementation of that knowledge into practice. Written conversationally and as a reflection on the journey of learning about complex systems, the book explores how knowledge of these systems can be applied to four key roles in academic medicine: clinical practice, education, research, and administration. Further, this title emphasizes how gaining an understanding of complex systems can greatly help a physician deal with the many challenges found in academic medicine. Unlike other books on complexity in medicine, which tend to focus on only one aspect of the management of patients, Complex Systems in Medicine deals with the multifaceted roles of a physician. The approach in this book is uniquely qualitative rather than mathematical, and is written to make it not only of interest to physicians, trainees, and allied health providers, but also to make it more accessible to a non-medical audience. The inclusion of personal anecdotes by the author provides concrete examples of the application of knowledge of complex systems in academic medicine. A first-of-its-kind contribution to the literature, Complex Systems in Medicine: A Hedgehog’s Tale of Complexity in Clinical Practice, Research, Education, and Management is not only a novel reference for medical professionals, it is an accessible tool for the non-medical audience hoping to learn more about complex systems and their direct relevance to medicine, a field that deals with the infinite variety of humans and their ills. It illustrates the consequences of the interactive elements of patient care that make medicine both a science and an art.
Encyclopedia of Complexity and Systems Science
Author:
Publisher: Springer
ISBN: 9780387758886
Category : Science
Languages : en
Pages : 10398
Book Description
This encyclopedia provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. It links fundamental concepts of mathematics and computational sciences to applications in the physical sciences, engineering, biomedicine, economics and the social sciences.
Publisher: Springer
ISBN: 9780387758886
Category : Science
Languages : en
Pages : 10398
Book Description
This encyclopedia provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. It links fundamental concepts of mathematics and computational sciences to applications in the physical sciences, engineering, biomedicine, economics and the social sciences.
Signals and Systems Analysis In Biomedical Engineering
Author: Robert B. Northrop
Publisher: CRC Press
ISBN: 1439812535
Category : Medical
Languages : en
Pages : 656
Book Description
The first edition of this text, based on the author's 30 years of teaching and research on neurosensory systems, helped biomedical engineering students and professionals strengthen their skills in the common network of applied mathematics that ties together the diverse disciplines that comprise this field. Updated and revised to include new materia
Publisher: CRC Press
ISBN: 1439812535
Category : Medical
Languages : en
Pages : 656
Book Description
The first edition of this text, based on the author's 30 years of teaching and research on neurosensory systems, helped biomedical engineering students and professionals strengthen their skills in the common network of applied mathematics that ties together the diverse disciplines that comprise this field. Updated and revised to include new materia
Biological Networks
Author: Franois Kps
Publisher: World Scientific
ISBN: 981270695X
Category : Science
Languages : en
Pages : 531
Book Description
This volume presents a timely and comprehensive overview of biological networks at all organization levels in the spirit of the complex system approach. It discusses the transversal issues and fundamental principles as well as the overall structure, dynamics, and modeling of a wide array of biological networks at the molecular, cellular, and population levels. Anchored in both empirical data and a strong theoretical background, the book therefore lends valuable credence to the complex systems approach.
Publisher: World Scientific
ISBN: 981270695X
Category : Science
Languages : en
Pages : 531
Book Description
This volume presents a timely and comprehensive overview of biological networks at all organization levels in the spirit of the complex system approach. It discusses the transversal issues and fundamental principles as well as the overall structure, dynamics, and modeling of a wide array of biological networks at the molecular, cellular, and population levels. Anchored in both empirical data and a strong theoretical background, the book therefore lends valuable credence to the complex systems approach.
Complex Systems and Computational Biology Approaches to Acute Inflammation
Author: Yoram Vodovotz
Publisher: Springer Nature
ISBN: 3030565106
Category : Medical
Languages : en
Pages : 307
Book Description
This second edition expands upon and updates the vital research covered in its predecessor, by presenting state-of-the-art multidisciplinary and systems-oriented approaches to complex diseases arising from and driven by the acute inflammatory response. The chapters in this volume provide an introduction to different types of computational modeling, and how these methods can be applied to specific inflammatory diseases, with a focus on providing readers a roadmap for integrating advanced mathematical and computational techniques with traditional experimental methods. In this second edition, we cover both well-established and emerging modeling methods, especially state-of-the-art machine learning approaches and the integration of data-driven and mechanistic modeling. This volume introduces the concept of Model-based Precision Medicine as an alternative approach to the current view of Precision Medicine, based on leveraging mechanistic computational modeling to decrease cost while increasing the information value of the data being obtained. By presenting the role of computational modeling as an integrated component of the research process, Complex Systems and Computational Biology Approaches to Acute Inflammation: A Framework for Model-based Precision Medicine offers a window into the recent past, the present, and the future of computationally-augmented biomedical research.
Publisher: Springer Nature
ISBN: 3030565106
Category : Medical
Languages : en
Pages : 307
Book Description
This second edition expands upon and updates the vital research covered in its predecessor, by presenting state-of-the-art multidisciplinary and systems-oriented approaches to complex diseases arising from and driven by the acute inflammatory response. The chapters in this volume provide an introduction to different types of computational modeling, and how these methods can be applied to specific inflammatory diseases, with a focus on providing readers a roadmap for integrating advanced mathematical and computational techniques with traditional experimental methods. In this second edition, we cover both well-established and emerging modeling methods, especially state-of-the-art machine learning approaches and the integration of data-driven and mechanistic modeling. This volume introduces the concept of Model-based Precision Medicine as an alternative approach to the current view of Precision Medicine, based on leveraging mechanistic computational modeling to decrease cost while increasing the information value of the data being obtained. By presenting the role of computational modeling as an integrated component of the research process, Complex Systems and Computational Biology Approaches to Acute Inflammation: A Framework for Model-based Precision Medicine offers a window into the recent past, the present, and the future of computationally-augmented biomedical research.
Comprehensive Systems Biomedicine
Author: Pietro Lio
Publisher: Frontiers E-books
ISBN: 2889193748
Category : Genetics
Languages : en
Pages : 114
Book Description
Systems Biomedicine is a field in perpetual development. By definition a translational discipline, it emphasizes the role of quantitative systems approaches in biomedicine and aims to offer solutions to many emerging problems characterized by levels and types of complexity and uncertainty unmet before. Many factors, including technological and societal ones, need to be considered. In particular, new technologies are providing researchers with the data deluge whose management and exploitation requires a reinvention of cross-disciplinary team efforts. The advent of “omics” and high-content imaging are examples of advances de facto establishing the necessity of systems approaches. Hypothesis-driven models and in silico validation tools in support to all the varieties of experimental applications call for a profound revision. The focus on phases like mining and assimilating the data has substantially increased so to allow for interpretable knowledge to be inferred. Notably, to be able to tackle the newly generated data dimensionality, heterogeneity and complexity, model-free and data-driven intensive applications are increasingly shaping the computational pipelines and architectures that quant specialists set aside of the high-throughput genomics, transcriptomics, proteomics platforms. As for the societal aspects, in many advanced societies health care needs now more than in the past to address the problem of managing ageing populations and their complex morbidity patterns. In parallel, there is a growing research interest on the impact that cross-disciplinary clinical, epidemiological and quantitative modelling studies can have in relation to outcomes potentially affecting the quality of life of many people. Complex systems, including those characterizing biomedicine, are assessed in both their functionality and stability, and also relatively to the capacity of generating information from diversity, variation, and complexity. Due to the combined interactions and effects, such systems embed prediction power available for instance in both target identification or marker discovery, or more generally for conducting inference about patients’ pathological states, i.e. normal versus disease, diagnostic or prognostic analysis, and preventive assessment (e.g., risk evaluation). The ultimate goal, personalized medicine, will be achieved based on the confluence of the system’s predictive power to patient-specific profiling.
Publisher: Frontiers E-books
ISBN: 2889193748
Category : Genetics
Languages : en
Pages : 114
Book Description
Systems Biomedicine is a field in perpetual development. By definition a translational discipline, it emphasizes the role of quantitative systems approaches in biomedicine and aims to offer solutions to many emerging problems characterized by levels and types of complexity and uncertainty unmet before. Many factors, including technological and societal ones, need to be considered. In particular, new technologies are providing researchers with the data deluge whose management and exploitation requires a reinvention of cross-disciplinary team efforts. The advent of “omics” and high-content imaging are examples of advances de facto establishing the necessity of systems approaches. Hypothesis-driven models and in silico validation tools in support to all the varieties of experimental applications call for a profound revision. The focus on phases like mining and assimilating the data has substantially increased so to allow for interpretable knowledge to be inferred. Notably, to be able to tackle the newly generated data dimensionality, heterogeneity and complexity, model-free and data-driven intensive applications are increasingly shaping the computational pipelines and architectures that quant specialists set aside of the high-throughput genomics, transcriptomics, proteomics platforms. As for the societal aspects, in many advanced societies health care needs now more than in the past to address the problem of managing ageing populations and their complex morbidity patterns. In parallel, there is a growing research interest on the impact that cross-disciplinary clinical, epidemiological and quantitative modelling studies can have in relation to outcomes potentially affecting the quality of life of many people. Complex systems, including those characterizing biomedicine, are assessed in both their functionality and stability, and also relatively to the capacity of generating information from diversity, variation, and complexity. Due to the combined interactions and effects, such systems embed prediction power available for instance in both target identification or marker discovery, or more generally for conducting inference about patients’ pathological states, i.e. normal versus disease, diagnostic or prognostic analysis, and preventive assessment (e.g., risk evaluation). The ultimate goal, personalized medicine, will be achieved based on the confluence of the system’s predictive power to patient-specific profiling.
Artificial Neural Networks in Biomedicine
Author: Paulo J.G. Lisboa
Publisher: Springer Science & Business Media
ISBN: 1447104870
Category : Computers
Languages : en
Pages : 290
Book Description
Following the intense research activIties of the last decade, artificial neural networks have emerged as one of the most promising new technologies for improving the quality of healthcare. Many successful applications of neural networks to biomedical problems have been reported which demonstrate, convincingly, the distinct benefits of neural networks, although many ofthese have only undergone a limited clinical evaluation. Healthcare providers and developers alike have discovered that medicine and healthcare are fertile areas for neural networks: the problems here require expertise and often involve non-trivial pattern recognition tasks - there are genuine difficulties with conventional methods, and data can be plentiful. The intense research activities in medical neural networks, and allied areas of artificial intelligence, have led to a substantial body of knowledge and the introduction of some neural systems into clinical practice. An aim of this book is to provide a coherent framework for some of the most experienced users and developers of medical neural networks in the world to share their knowledge and expertise with readers.
Publisher: Springer Science & Business Media
ISBN: 1447104870
Category : Computers
Languages : en
Pages : 290
Book Description
Following the intense research activIties of the last decade, artificial neural networks have emerged as one of the most promising new technologies for improving the quality of healthcare. Many successful applications of neural networks to biomedical problems have been reported which demonstrate, convincingly, the distinct benefits of neural networks, although many ofthese have only undergone a limited clinical evaluation. Healthcare providers and developers alike have discovered that medicine and healthcare are fertile areas for neural networks: the problems here require expertise and often involve non-trivial pattern recognition tasks - there are genuine difficulties with conventional methods, and data can be plentiful. The intense research activities in medical neural networks, and allied areas of artificial intelligence, have led to a substantial body of knowledge and the introduction of some neural systems into clinical practice. An aim of this book is to provide a coherent framework for some of the most experienced users and developers of medical neural networks in the world to share their knowledge and expertise with readers.
New Challenges for Cancer Systems Biomedicine
Author: Alberto D'Onofrio
Publisher: Springer Science & Business Media
ISBN: 8847025710
Category : Mathematics
Languages : en
Pages : 398
Book Description
The future of oncology seems to lie in Molecular Medicine (MM). MM is a new science based on three pillars. Two of them are evident in its very name and are well known: medical science and molecular biology. However, there is a general unawareness that MM is firmly based on a third, and equally important, pillar: Systems Biomedicine. Currently, this term denotes multilevel, hierarchical models integrating key factors at the molecular, cellular, tissue, through phenotype levels, analyzed to reveal the global behavior of the biological process under consideration. It becomes increasingly evident that the tools to construct such complex models include, not only bioinformatics and modern applied statistics, as is unanimously agreed, but also other interdisciplinary fields of science, notably, Mathematical Oncology, Systems Biology and Theoretical Biophysics.
Publisher: Springer Science & Business Media
ISBN: 8847025710
Category : Mathematics
Languages : en
Pages : 398
Book Description
The future of oncology seems to lie in Molecular Medicine (MM). MM is a new science based on three pillars. Two of them are evident in its very name and are well known: medical science and molecular biology. However, there is a general unawareness that MM is firmly based on a third, and equally important, pillar: Systems Biomedicine. Currently, this term denotes multilevel, hierarchical models integrating key factors at the molecular, cellular, tissue, through phenotype levels, analyzed to reveal the global behavior of the biological process under consideration. It becomes increasingly evident that the tools to construct such complex models include, not only bioinformatics and modern applied statistics, as is unanimously agreed, but also other interdisciplinary fields of science, notably, Mathematical Oncology, Systems Biology and Theoretical Biophysics.