Author: Gourab Ghoshal
Publisher: Springer
ISBN: 3642368441
Category : Technology & Engineering
Languages : en
Pages : 198
Book Description
A network is a mathematical object consisting of a set of points (called vertices or nodes) that are connected to each other in some fashion by lines (called edges). Turns out this simple description corresponds to a bewildering array of systems in the real world, ranging from technological ones such as the Internet and World Wide Web, biological networks such as that of connections of the nervous systems or blood vessels, food webs, protein interactions, infrastructural systems such as networks of roads, airports or the power-grid, to patterns of social acquaintance such as friendship, network of Hollywood actors, connections between business houses and many more. Recent years have witnessed a substantial amount of interest within the scientific community in the properties of these networks. The emergence of the internet in particular, coupled with the widespread availability of inexpensive computing resources has facilitated studies ranging from large scale empirical analysis of networks in the real world, to the development of theoretical models and tools to explore the various properties of these systems. The study of networks is broadly interdisciplinary and central developments have occurred in many fields, including mathematics, physics, computer and information sciences, biology, and the social sciences. This book brings together a collection of cutting-edge research in the field from a diverse array of researchers ranging from physicists to social scientists, and presents them in a coherent fashion, highlighting the strong interconnections between the different areas. Topics included are social networks and social media, opinion and innovation diffusion, syncronization, transportation networks and human mobility, as well as theory, modeling and metrics of Complex Networks.
Complex Networks IV
Author: Gourab Ghoshal
Publisher: Springer
ISBN: 3642368441
Category : Technology & Engineering
Languages : en
Pages : 198
Book Description
A network is a mathematical object consisting of a set of points (called vertices or nodes) that are connected to each other in some fashion by lines (called edges). Turns out this simple description corresponds to a bewildering array of systems in the real world, ranging from technological ones such as the Internet and World Wide Web, biological networks such as that of connections of the nervous systems or blood vessels, food webs, protein interactions, infrastructural systems such as networks of roads, airports or the power-grid, to patterns of social acquaintance such as friendship, network of Hollywood actors, connections between business houses and many more. Recent years have witnessed a substantial amount of interest within the scientific community in the properties of these networks. The emergence of the internet in particular, coupled with the widespread availability of inexpensive computing resources has facilitated studies ranging from large scale empirical analysis of networks in the real world, to the development of theoretical models and tools to explore the various properties of these systems. The study of networks is broadly interdisciplinary and central developments have occurred in many fields, including mathematics, physics, computer and information sciences, biology, and the social sciences. This book brings together a collection of cutting-edge research in the field from a diverse array of researchers ranging from physicists to social scientists, and presents them in a coherent fashion, highlighting the strong interconnections between the different areas. Topics included are social networks and social media, opinion and innovation diffusion, syncronization, transportation networks and human mobility, as well as theory, modeling and metrics of Complex Networks.
Publisher: Springer
ISBN: 3642368441
Category : Technology & Engineering
Languages : en
Pages : 198
Book Description
A network is a mathematical object consisting of a set of points (called vertices or nodes) that are connected to each other in some fashion by lines (called edges). Turns out this simple description corresponds to a bewildering array of systems in the real world, ranging from technological ones such as the Internet and World Wide Web, biological networks such as that of connections of the nervous systems or blood vessels, food webs, protein interactions, infrastructural systems such as networks of roads, airports or the power-grid, to patterns of social acquaintance such as friendship, network of Hollywood actors, connections between business houses and many more. Recent years have witnessed a substantial amount of interest within the scientific community in the properties of these networks. The emergence of the internet in particular, coupled with the widespread availability of inexpensive computing resources has facilitated studies ranging from large scale empirical analysis of networks in the real world, to the development of theoretical models and tools to explore the various properties of these systems. The study of networks is broadly interdisciplinary and central developments have occurred in many fields, including mathematics, physics, computer and information sciences, biology, and the social sciences. This book brings together a collection of cutting-edge research in the field from a diverse array of researchers ranging from physicists to social scientists, and presents them in a coherent fashion, highlighting the strong interconnections between the different areas. Topics included are social networks and social media, opinion and innovation diffusion, syncronization, transportation networks and human mobility, as well as theory, modeling and metrics of Complex Networks.
Graph Spectra for Complex Networks
Author: Piet van Mieghem
Publisher: Cambridge University Press
ISBN: 1139492276
Category : Technology & Engineering
Languages : en
Pages : 363
Book Description
Analyzing the behavior of complex networks is an important element in the design of new man-made structures such as communication systems and biologically engineered molecules. Because any complex network can be represented by a graph, and therefore in turn by a matrix, graph theory has become a powerful tool in the investigation of network performance. This self-contained 2010 book provides a concise introduction to the theory of graph spectra and its applications to the study of complex networks. Covering a range of types of graphs and topics important to the analysis of complex systems, this guide provides the mathematical foundation needed to understand and apply spectral insight to real-world systems. In particular, the general properties of both the adjacency and Laplacian spectrum of graphs are derived and applied to complex networks. An ideal resource for researchers and students in communications networking as well as in physics and mathematics.
Publisher: Cambridge University Press
ISBN: 1139492276
Category : Technology & Engineering
Languages : en
Pages : 363
Book Description
Analyzing the behavior of complex networks is an important element in the design of new man-made structures such as communication systems and biologically engineered molecules. Because any complex network can be represented by a graph, and therefore in turn by a matrix, graph theory has become a powerful tool in the investigation of network performance. This self-contained 2010 book provides a concise introduction to the theory of graph spectra and its applications to the study of complex networks. Covering a range of types of graphs and topics important to the analysis of complex systems, this guide provides the mathematical foundation needed to understand and apply spectral insight to real-world systems. In particular, the general properties of both the adjacency and Laplacian spectrum of graphs are derived and applied to complex networks. An ideal resource for researchers and students in communications networking as well as in physics and mathematics.
Control Techniques for Complex Networks
Author: Sean Meyn
Publisher: Cambridge University Press
ISBN: 0521884411
Category : Mathematics
Languages : en
Pages : 33
Book Description
From foundations to state-of-the-art; the tools and philosophy you need to build network models.
Publisher: Cambridge University Press
ISBN: 0521884411
Category : Mathematics
Languages : en
Pages : 33
Book Description
From foundations to state-of-the-art; the tools and philosophy you need to build network models.
Complex Networks
Author: Kayhan Erciyes
Publisher: CRC Press
ISBN: 1466571675
Category : Computers
Languages : en
Pages : 318
Book Description
Complex Networks: An Algorithmic Perspective supplies the basic theoretical algorithmic and graph theoretic knowledge needed by every researcher and student of complex networks. This book is about specifying, classifying, designing, and implementing mostly sequential and also parallel and distributed algorithms that can be used to analyze the static properties of complex networks. Providing a focused scope which consists of graph theory and algorithms for complex networks, the book identifies and describes a repertoire of algorithms that may be useful for any complex network.
Publisher: CRC Press
ISBN: 1466571675
Category : Computers
Languages : en
Pages : 318
Book Description
Complex Networks: An Algorithmic Perspective supplies the basic theoretical algorithmic and graph theoretic knowledge needed by every researcher and student of complex networks. This book is about specifying, classifying, designing, and implementing mostly sequential and also parallel and distributed algorithms that can be used to analyze the static properties of complex networks. Providing a focused scope which consists of graph theory and algorithms for complex networks, the book identifies and describes a repertoire of algorithms that may be useful for any complex network.
Complex Networks
Author: Vito Latora
Publisher: Cambridge University Press
ISBN: 1108298680
Category : Science
Languages : en
Pages : 585
Book Description
Networks constitute the backbone of complex systems, from the human brain to computer communications, transport infrastructures to online social systems and metabolic reactions to financial markets. Characterising their structure improves our understanding of the physical, biological, economic and social phenomena that shape our world. Rigorous and thorough, this textbook presents a detailed overview of the new theory and methods of network science. Covering algorithms for graph exploration, node ranking and network generation, among others, the book allows students to experiment with network models and real-world data sets, providing them with a deep understanding of the basics of network theory and its practical applications. Systems of growing complexity are examined in detail, challenging students to increase their level of skill. An engaging presentation of the important principles of network science makes this the perfect reference for researchers and undergraduate and graduate students in physics, mathematics, engineering, biology, neuroscience and the social sciences.
Publisher: Cambridge University Press
ISBN: 1108298680
Category : Science
Languages : en
Pages : 585
Book Description
Networks constitute the backbone of complex systems, from the human brain to computer communications, transport infrastructures to online social systems and metabolic reactions to financial markets. Characterising their structure improves our understanding of the physical, biological, economic and social phenomena that shape our world. Rigorous and thorough, this textbook presents a detailed overview of the new theory and methods of network science. Covering algorithms for graph exploration, node ranking and network generation, among others, the book allows students to experiment with network models and real-world data sets, providing them with a deep understanding of the basics of network theory and its practical applications. Systems of growing complexity are examined in detail, challenging students to increase their level of skill. An engaging presentation of the important principles of network science makes this the perfect reference for researchers and undergraduate and graduate students in physics, mathematics, engineering, biology, neuroscience and the social sciences.
Modularity and Dynamics on Complex Networks
Author: Renaud Lambiotte
Publisher: Cambridge University Press
ISBN: 1108808654
Category : Science
Languages : en
Pages : 102
Book Description
Complex networks are typically not homogeneous, as they tend to display an array of structures at different scales. A feature that has attracted a lot of research is their modular organisation, i.e., networks may often be considered as being composed of certain building blocks, or modules. In this Element, the authors discuss a number of ways in which this idea of modularity can be conceptualised, focusing specifically on the interplay between modular network structure and dynamics taking place on a network. They discuss, in particular, how modular structure and symmetries may impact on network dynamics and, vice versa, how observations of such dynamics may be used to infer the modular structure. They also revisit several other notions of modularity that have been proposed for complex networks and show how these can be related to and interpreted from the point of view of dynamical processes on networks.
Publisher: Cambridge University Press
ISBN: 1108808654
Category : Science
Languages : en
Pages : 102
Book Description
Complex networks are typically not homogeneous, as they tend to display an array of structures at different scales. A feature that has attracted a lot of research is their modular organisation, i.e., networks may often be considered as being composed of certain building blocks, or modules. In this Element, the authors discuss a number of ways in which this idea of modularity can be conceptualised, focusing specifically on the interplay between modular network structure and dynamics taking place on a network. They discuss, in particular, how modular structure and symmetries may impact on network dynamics and, vice versa, how observations of such dynamics may be used to infer the modular structure. They also revisit several other notions of modularity that have been proposed for complex networks and show how these can be related to and interpreted from the point of view of dynamical processes on networks.
Nonlinear Pinning Control of Complex Dynamical Networks
Author: Edgar N. Sanchez
Publisher: CRC Press
ISBN: 1000415198
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
This book presents two nonlinear control strategies for complex dynamical networks. First, sliding-mode control is used, and then the inverse optimal control approach is employed. For both cases, model-based is considered in Chapter 3 and Chapter 5; then, Chapter 4 and Chapter 6 are based on determining a model for the unknow system using a recurrent neural network, using on-line extended Kalman filtering for learning. The book is organized in four sections. The first one covers mathematical preliminaries, with a brief review for complex networks, and the pinning methodology. Additionally, sliding-mode control and inverse optimal control are introduced. Neural network structures are also discussed along with a description of the high-order ones. The second section presents the analysis and simulation results for sliding-mode control for identical as well as non-identical nodes. The third section describes analysis and simulation results for inverse optimal control considering identical or non-identical nodes. Finally, the last section presents applications of these schemes, using gene regulatory networks and microgrids as examples.
Publisher: CRC Press
ISBN: 1000415198
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
This book presents two nonlinear control strategies for complex dynamical networks. First, sliding-mode control is used, and then the inverse optimal control approach is employed. For both cases, model-based is considered in Chapter 3 and Chapter 5; then, Chapter 4 and Chapter 6 are based on determining a model for the unknow system using a recurrent neural network, using on-line extended Kalman filtering for learning. The book is organized in four sections. The first one covers mathematical preliminaries, with a brief review for complex networks, and the pinning methodology. Additionally, sliding-mode control and inverse optimal control are introduced. Neural network structures are also discussed along with a description of the high-order ones. The second section presents the analysis and simulation results for sliding-mode control for identical as well as non-identical nodes. The third section describes analysis and simulation results for inverse optimal control considering identical or non-identical nodes. Finally, the last section presents applications of these schemes, using gene regulatory networks and microgrids as examples.
Complex Network Analysis in Python
Author: Dmitry Zinoviev
Publisher: Pragmatic Bookshelf
ISBN: 1680505408
Category : Computers
Languages : en
Pages : 330
Book Description
Construct, analyze, and visualize networks with networkx, a Python language module. Network analysis is a powerful tool you can apply to a multitude of datasets and situations. Discover how to work with all kinds of networks, including social, product, temporal, spatial, and semantic networks. Convert almost any real-world data into a complex network--such as recommendations on co-using cosmetic products, muddy hedge fund connections, and online friendships. Analyze and visualize the network, and make business decisions based on your analysis. If you're a curious Python programmer, a data scientist, or a CNA specialist interested in mechanizing mundane tasks, you'll increase your productivity exponentially. Complex network analysis used to be done by hand or with non-programmable network analysis tools, but not anymore! You can now automate and program these tasks in Python. Complex networks are collections of connected items, words, concepts, or people. By exploring their structure and individual elements, we can learn about their meaning, evolution, and resilience. Starting with simple networks, convert real-life and synthetic network graphs into networkx data structures. Look at more sophisticated networks and learn more powerful machinery to handle centrality calculation, blockmodeling, and clique and community detection. Get familiar with presentation-quality network visualization tools, both programmable and interactive--such as Gephi, a CNA explorer. Adapt the patterns from the case studies to your problems. Explore big networks with NetworKit, a high-performance networkx substitute. Each part in the book gives you an overview of a class of networks, includes a practical study of networkx functions and techniques, and concludes with case studies from various fields, including social networking, anthropology, marketing, and sports analytics. Combine your CNA and Python programming skills to become a better network analyst, a more accomplished data scientist, and a more versatile programmer. What You Need: You will need a Python 3.x installation with the following additional modules: Pandas (>=0.18), NumPy (>=1.10), matplotlib (>=1.5), networkx (>=1.11), python-louvain (>=0.5), NetworKit (>=3.6), and generalizesimilarity. We recommend using the Anaconda distribution that comes with all these modules, except for python-louvain, NetworKit, and generalizedsimilarity, and works on all major modern operating systems.
Publisher: Pragmatic Bookshelf
ISBN: 1680505408
Category : Computers
Languages : en
Pages : 330
Book Description
Construct, analyze, and visualize networks with networkx, a Python language module. Network analysis is a powerful tool you can apply to a multitude of datasets and situations. Discover how to work with all kinds of networks, including social, product, temporal, spatial, and semantic networks. Convert almost any real-world data into a complex network--such as recommendations on co-using cosmetic products, muddy hedge fund connections, and online friendships. Analyze and visualize the network, and make business decisions based on your analysis. If you're a curious Python programmer, a data scientist, or a CNA specialist interested in mechanizing mundane tasks, you'll increase your productivity exponentially. Complex network analysis used to be done by hand or with non-programmable network analysis tools, but not anymore! You can now automate and program these tasks in Python. Complex networks are collections of connected items, words, concepts, or people. By exploring their structure and individual elements, we can learn about their meaning, evolution, and resilience. Starting with simple networks, convert real-life and synthetic network graphs into networkx data structures. Look at more sophisticated networks and learn more powerful machinery to handle centrality calculation, blockmodeling, and clique and community detection. Get familiar with presentation-quality network visualization tools, both programmable and interactive--such as Gephi, a CNA explorer. Adapt the patterns from the case studies to your problems. Explore big networks with NetworKit, a high-performance networkx substitute. Each part in the book gives you an overview of a class of networks, includes a practical study of networkx functions and techniques, and concludes with case studies from various fields, including social networking, anthropology, marketing, and sports analytics. Combine your CNA and Python programming skills to become a better network analyst, a more accomplished data scientist, and a more versatile programmer. What You Need: You will need a Python 3.x installation with the following additional modules: Pandas (>=0.18), NumPy (>=1.10), matplotlib (>=1.5), networkx (>=1.11), python-louvain (>=0.5), NetworKit (>=3.6), and generalizesimilarity. We recommend using the Anaconda distribution that comes with all these modules, except for python-louvain, NetworKit, and generalizedsimilarity, and works on all major modern operating systems.
Electronics, Communications and Networks IV
Author: Amir Hussain
Publisher: CRC Press
ISBN: 1315682109
Category : Computers
Languages : en
Pages : 1836
Book Description
The 4th International Conference on Electronic, Communications and Networks (CECNet2014) inherits the fruitfulness of the past three conferences and lays a foundation for the forthcoming next year in Shanghai. CECNet2014 was hosted by Hubei University of Science and Technology, China, with the main objective of providing a comprehensive global forum for experts and participants from acadamia to exchange ideas and presenting results of ongoing research in the most state-of-the-art areas of Consumer Electronics Technology, Communication Engineering and Technology, Wireless Communications Enginneering and Technology, and Computer Engineering and Technology.In this event, 13 famous scholars and Engineers have delivered the keynote speeches on their latest research, including Prof. Vijaykrishnan Narayanan (a Fellow of the Institute of Electrical and ElectronicsEngineers), Prof. Han-Chieh Chao (the Director of the Computer Center for Ministry of Education Taiwan from September 2008 to July 2010), Prof. Borko Furht (the founder of the Journal of Multimedia Tools and Applications), Prof. Kevin Deng (who served as Acting Director of Hong Kong APAS R&D Center in 2010), and Prof. Minho Jo (the Professor of Department of Computer and Information Science, Korea University).
Publisher: CRC Press
ISBN: 1315682109
Category : Computers
Languages : en
Pages : 1836
Book Description
The 4th International Conference on Electronic, Communications and Networks (CECNet2014) inherits the fruitfulness of the past three conferences and lays a foundation for the forthcoming next year in Shanghai. CECNet2014 was hosted by Hubei University of Science and Technology, China, with the main objective of providing a comprehensive global forum for experts and participants from acadamia to exchange ideas and presenting results of ongoing research in the most state-of-the-art areas of Consumer Electronics Technology, Communication Engineering and Technology, Wireless Communications Enginneering and Technology, and Computer Engineering and Technology.In this event, 13 famous scholars and Engineers have delivered the keynote speeches on their latest research, including Prof. Vijaykrishnan Narayanan (a Fellow of the Institute of Electrical and ElectronicsEngineers), Prof. Han-Chieh Chao (the Director of the Computer Center for Ministry of Education Taiwan from September 2008 to July 2010), Prof. Borko Furht (the founder of the Journal of Multimedia Tools and Applications), Prof. Kevin Deng (who served as Acting Director of Hong Kong APAS R&D Center in 2010), and Prof. Minho Jo (the Professor of Department of Computer and Information Science, Korea University).
Epidemics and Rumours in Complex Networks
Author: Moez Draief
Publisher: Cambridge University Press
ISBN: 9780521734431
Category : Mathematics
Languages : en
Pages : 0
Book Description
Information propagation through peer-to-peer systems, online social systems, wireless mobile ad hoc networks and other modern structures can be modelled as an epidemic on a network of contacts. Understanding how epidemic processes interact with network topology allows us to predict ultimate course, understand phase transitions and develop strategies to control and optimise dissemination. This book is a concise introduction for applied mathematicians and computer scientists to basic models, analytical tools and mathematical and algorithmic results. Mathematical tools introduced include coupling methods, Poisson approximation (the Stein-Chen method), concentration inequalities (Chernoff bounds and Azuma-Hoeffding inequality) and branching processes. The authors examine the small-world phenomenon, preferential attachment, as well as classical epidemics. Each chapter ends with pointers to the wider literature. An ideal accompaniment for graduate courses, this book is also for researchers (statistical physicists, biologists, social scientists) who need an efficient guide to modern approaches to epidemic modelling on networks.
Publisher: Cambridge University Press
ISBN: 9780521734431
Category : Mathematics
Languages : en
Pages : 0
Book Description
Information propagation through peer-to-peer systems, online social systems, wireless mobile ad hoc networks and other modern structures can be modelled as an epidemic on a network of contacts. Understanding how epidemic processes interact with network topology allows us to predict ultimate course, understand phase transitions and develop strategies to control and optimise dissemination. This book is a concise introduction for applied mathematicians and computer scientists to basic models, analytical tools and mathematical and algorithmic results. Mathematical tools introduced include coupling methods, Poisson approximation (the Stein-Chen method), concentration inequalities (Chernoff bounds and Azuma-Hoeffding inequality) and branching processes. The authors examine the small-world phenomenon, preferential attachment, as well as classical epidemics. Each chapter ends with pointers to the wider literature. An ideal accompaniment for graduate courses, this book is also for researchers (statistical physicists, biologists, social scientists) who need an efficient guide to modern approaches to epidemic modelling on networks.